Aerospace Blockset ${ }^{T M}$

 User's GuideR2014b

MATLAB®\&SIMULINK

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Aerospace Blockset ${ }^{\text {TM }}$ User's Guide
© COPYRIGHT 2002-2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

July $2002 \quad$ Online only
July 2003
June 2004
October 2004
March 2005
May 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014

Online only
Online only Online only Online only Online only First printing Online only Online only Online only Second printing Online only Online only

New for Version 1.0 (Release 13)
Revised for Version 1.5 (Release 13SP1)
Revised for Version 1.6 (Release 14)
Revised for Version 1.6.1 (Release 14SP1)
Revised for Version 1.6.2 (Release 14SP2)
Revised for Version 2.0 (Release 14SP2+)
Revised for Version 2.0.1 (Release 14SP3)
Revised for Version 2.1 (Release 2006a)
Revised for Version 2.2 (Release 2006b)
Revised for Version 2.3 (Release 2007a)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 3.6 (Release 2010b)
Revised for Version 3.7 (Release 2011a)
Revised for Version 3.8 (Release 2011b)
Revised for Version 3.9 (Release 2012a)
Revised for Version 3.10 (Release 2012b)
Revised for Version 3.11 (Release 2013a)
Revised for Version 3.12 (Release 2013b)
Revised for Version 3.13 (Release 2014a)
Revised for Version 3.14 (Release 2014b)

Getting Started

1

Aerospace Blockset Product Description 1-2
Key Features 1-2
Code Generation Support 1-3
Support for Aerospace Toolbox Quaternion Functions 1-4
Related Products 1-5
Requirements for the Aerospace Blockset Product 1-5
Other Related Products 1-5
Explore the NASA HL-20 Model 1-6
Introduction 1-6
What This Example Illustrates 1-6
Open the Model 1-7
Key Subsystems 1-9
NASA HL-20 Example 1-10
Modify the Model 1-13
Open Aerospace Examples 1-15
Aerospace Blockset Software
2
Create Aerospace Models 2-2
Basic Steps 2-2
Build a Simple Actuator System 2-5
Build the Model 2-5
Run the Simulation 2-9
About Aerospace Coordinate Systems 2-11
Fundamental Coordinate System Concepts 2-11
Coordinate Systems for Modeling 2-12
Coordinate Systems for Navigation 2-15
Coordinate Systems for Display 2-17
References 2-19
Flight Simulator Interface 2-20
About the FlightGear Interface 2-20
Supported FlightGear Versions 2-20
Obtain FlightGear 2-21
Configure Your Computer for FlightGear 2-21
Install and Start FlightGear 2-24
Work with the Flight Simulator Interface 2-26
Introduction 2-26
About Aircraft Geometry Models 2-27
Work with Aircraft Geometry Models 2-29
Run FlightGear with the Simulink Models 2-31
Run the NASA HL-20 Example with FlightGear 2-38
Send and Receive Data 2-41
Simulink Projects Template for Flight Simulation Applications 2-47
Flight Simulation Applications 2-47
Case Studies
3
Ideal Airspeed Correction 3-2
Introduction 3-2
Airspeed Correction Models 3-2
Measure Airspeed 3-3
Model Airspeed Correction 3-4
Simulate Airspeed Correction 3-6
1903 Wright Flyer 3-8
Introduction 3-8
Wright Flyer Model 3-9
Airframe Subsystem 3-9
Environment Subsystem 3-12
Pilot Subsystem 3-13
Run the Simulation 3-14
References 3-15
NASA HL-20 Lifting Body Airframe 3-17
Introduction 3-17
NASA HL-20 Lifting Body 3-17
The HL-20 Airframe and Controller Model 3-18
References 3-28
Blocks - Alphabetical List
4
Aerospace Units
A

Getting Started

- "Aerospace Blockset Product Description" on page 1-2
- "Code Generation Support" on page 1-3
- "Support for Aerospace Toolbox Quaternion Functions" on page 1-4
- "Related Products" on page 1-5
- "Explore the NASA HL-20 Model" on page 1-6
- "Open Aerospace Examples" on page 1-15

Aerospace Blockset Product Description

Model and simulate aircraft, spacecraft, and propulsion systems
Aerospace Blockset ${ }^{\text {TM }}$ software extends Simulink ${ }^{\circledR}$ with blocks for modeling and simulating aircraft, spacecraft, rocket, and propulsion systems, as well as unmanned airborne vehicles. It also includes blocks that implement mathematical representations from aerospace standards, common references, and first principles. Blocks for modeling equations of motion and for navigation, gain scheduling, visualization, unit conversion, and other key operations are also provided.

Key Features

- Simulates aerospace vehicle components, including propulsion systems, control systems, mass properties, and actuators
- Models flight dynamics, including three- and six-degrees-of-freedom equations of motion with fixed or variable mass
- Provides options for visualizing vehicle dynamics in a three-dimensional environment, including an interface to FlightGear flight simulator
- Includes standards-based environmental models for atmosphere, gravity, wind, geoid height, and magnetic field
- Implements predefined utilities for converting units, transforming coordinate systems and spatial representations, and performing common aerospace math operations

Code Generation Support

Use the Aerospace Blockset software with the Simulink Coder ${ }^{\text {TM }}$ software to automatically generate code for real-time execution in rapid prototyping and for hardware-in-the-loop systems.

Support for Aerospace Toolbox Quaternion Functions

The Aerospace Blockset product supports the following Aerospace Toolbox quaternion functions in the MATLAB Function block:
quatconj
quatinv
quatmod quatmultiply quatdivide quatnorm quatnormalize

For further information on using the MATLAB Function block, see:

- "What Is a MATLAB Function Block?"
- asbQuatEML example, which illustrates quaternions and models the equations

Related Products

In this section...

"Requirements for the Aerospace Blockset Product" on page 1-5
"Other Related Products" on page 1-5

Requirements for the Aerospace Blockset Product

In particular, the Aerospace Blockset product requires current versions of these products:

- MATLAB
- Aerospace Toolbox
- Simulink

Other Related Products

The related products listed on the Aerospace Blockset product page at the MathWorks Web site include toolboxes and blocksets that extend the capabilities of the MATLAB ${ }^{\text {® }}$ and Simulink products. These products will enhance your use of the Aerospace Blockset product in various applications.

For More Information About MathWorks Products

For more information about any MathWorks ${ }^{\circledR}$ software products, see either

- The online documentation for that product if it is installed
- The MathWorks Web site at www. mathworks . com; see the "Products" section

Explore the NASA HL-20 Model

```
In this section...
"Introduction" on page 1-6
"What This Example Illustrates" on page 1-6
"Open the Model" on page 1-7
"Key Subsystems" on page 1-9
"NASA HL-20 Example" on page 1-10
"Modify the Model" on page 1-13
```


Introduction

This section introduces a NASA HL-20 lifting body airframe model that uses blocks from the Aerospace Blockset software to simulate the airframe of a NASA HL-20 lifting body, in conjunction with other Simulink blocks.

The model simulates the NASA HL-20 lifting body airframe approach and landing flight phases using an automatic-landing controller.

For more information on this model, see "NASA HL-20 Lifting Body Airframe".

What This Example Illustrates

The NASA HL-20 lifting body airframe example illustrates the following features of the blockset:

- Representing bodies and their degrees of freedom with the Equations of Motion library blocks
- Using the Aerospace Blockset blocks with other Simulink blocks
- Feeding Simulink signals to and from Aerospace Blockset blocks with Actuator and Sensor blocks
- Encapsulating groups of blocks into subsystems
- Visualizing an aircraft with Simulink 3D Animation ${ }^{\text {TM }}$ and Gauges Blockset ${ }^{\text {TM }}$ library blocks.

Open the Model

To open the NASA HL-20 airframe example, type the example name, aeroblk_HL20, at the MATLAB command line. The model opens.

The visualization subsystem, four scopes, and a Simulink 3D Animation viewer for the airframe also appear.

Key Subsystems

The model implements the airframe using the following subsystems:

- The 6DOF (Euler Angles) subsystem implements the 6DOF (Euler Angles) block along with other Simulink blocks.
- The Environment Models subsystem implements the WGS84 Gravity Model and COESA Atmosphere Model blocks. It also contains a Wind Models subsystem that implements a number of wind blocks.
- The Alpha, Beta, Mach subsystem implements the Incidence, Sideslip \& Airspeed, Mach Number, and Dynamic Pressure blocks. These blocks calculate aerodynamic coefficient values and lookup functionality.
- The Forces and Moments subsystem implements the Aerodynamic Forces and Moments block. This subsystem calculates body forces and body moments.
- The Aerodynamic Coefficients subsystem implements several subsystems to calculate six aerodynamic coefficients.

NASA HL-20 Example

Running an example lets you observe the model simulation in real time. After you run the example, you can examine the resulting data in plots, graphs, and other visualization tools. To run this model, follow these steps:

1 If it is not already open, open the aeroblk_HL20 example.
2 From the Simulation menu, select Start. On Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ systems, you can also click the Start button in the model window toolbar.

The simulation proceeds until the aircraft lands:

View of the landed airframe

Plot that Measures Guidance Performance

Plot that Measures Altitude Accelerations Mach

Plot that Measures Inertial Position

Plot that Measures Demand Data Against Achieved Data

Modify the Model

You can adjust the airframe model settings and examine the effects on simulation performance. Here is one modification that you can try. It changes the camera point of view for the landing animation.

Change the Animation Point of View

By default, the airframe animation viewpoint is Rear position, which means the view tracks with the airframe flight path from the rear. You can change the animation point of view by selecting another viewpoint from the Simulink 3D Animation viewer:

1 Open the aeroblk_HL20 model, and click the Simulink 3D Animation viewer.
2 From the list of existing viewpoints, change the viewpoint to Fixed Position.

The airframe view changes to a fixed position.
3 Start the model again. Notice the different airframe viewpoint when the airframe lands.

You can experiment with different viewpoints to watch the animation from different perspectives.

Open Aerospace Examples

To open an Aerospace Blockset example from the Help Browser:
1 Open the MATLAB Command Window.
2 Click the question mark.
3 Navigate to Aerospace Blockset and click the Examples tab.
For in-depth case studies of the following examples, see:

- "Ideal Airspeed Correction"
- "1903 Wright Flyer"
- "NASA HL-20 Lifting Body Airframe"

Aerospace Blockset Software

- "Create Aerospace Models" on page 2-2
- "Build a Simple Actuator System" on page 2-5
- "About Aerospace Coordinate Systems" on page 2-11
- "Flight Simulator Interface" on page 2-20
- "Work with the Flight Simulator Interface" on page 2-26
- "Simulink Projects Template for Flight Simulation Applications" on page 2-47

Create Aerospace Models

Basic Steps

Regardless of the model's complexity, you use the same essential steps for creating an aerospace model as you would for creating any other Simulink model.

1 Open the Aerospace Blockset Library.
Type simulink to open Simulink Library Browser in the MATLAB Command Window or click the 回回 button.

The left pane contains a list of all the blocksets that you currently have installed.
Navigate to the Aerospace Blockset node and expand the hierarchical list to display that blockset libraries within the browser.

Alternatively, to open the Aerospace Blockset window from the MATLAB command line, enter
aerolib
Double-click any library in the window to display its contents. The following figure shows the Aerospace Blockset library window.

2 Select and position the blocks. You must first select the blocks that you need to build your model, and then position the blocks in the model window. For the majority of Simulink models, you select one or more blocks from each of the following categories:
a Source blocks generate or import signals into the model, such as a sine wave, a clock, or limited-band white noise.
b Simulation blocks can consist of almost any type of block that performs an action in the simulation. A simulation block represents a part of the model functionality to be simulated, such as an actuator block, a mathematical operation, a block from the Aerospace Blockset library, and so on.
c Signal Routing blocks route signals from one point in a model to another. If you need to combine or redirect two or more signals in your model, you will probably use a Simulink Signal Routing block, such as Mux and Demux.

As an alternative to the Mux block, you can use the Vector option of the Concatenate block Mode parameter (also known as the Vector Concatenate block). This block provides a more general way for you to route signals from one point in the a model to another. The Vector mode takes as input a vector of
signals of the same data type and creates a contiguous output signal. Depending on the input, this block outputs a row or column vector if any of the inputs are row or column vectors, respectively.
d Sink blocks display, write, or save model output. To see the results of the simulation, you must use a Sink block.
3 Configure the blocks. Most blocks feature configuration options that let you customize block functionality to specific simulation parameters. For example, the ISA Atmosphere Model block provides configuration options for setting the height of the troposphere, tropopause, and air density at sea level.
4 Connect the blocks. To create signal pathways between blocks, you connect the blocks to each other. You can do this manually by clicking and dragging, or you can connect blocks automatically.
5 Encapsulate subsystems. Systems made with Aerospace Blockset blocks can function as subsystems of larger, more complex models, like subsystems in any Simulink model.

Build a Simple Actuator System

In this section...
"Build the Model" on page 2-5
"Run the Simulation" on page 2-9

Build the Model

The Simulink product is a software environment for modeling, simulating, and analyzing dynamic systems. Try building a simple model that drives an actuator with a sine wave and displays the actuator's position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of building it, enter aeroblktutorial at the MATLAB command line.

The following section ("Create a Model" on page 2-6) explains how to build a model on Windows platforms. You can use this same procedure to build a model on Linux ${ }^{\circledR}$ platforms.

The section describes how to build the model. It does not describe how to set the configuration parameters for the model. See "Configuration Parameters Dialog Box Overview". That topic describes the Configuration Parameters Dialog Box for models. If you do not set any configuration parameters, simulating models might cause warnings like:

```
Warning: Using a default value of 0.2 for maximum step size.
The simulation step size will be equal to or less than this
value. You can disable this diagnostic by setting
'Automatic solver parameter selection' diagnostic to 'none'
in the Diagnostics page of the configuration parameters
dialog
```


Create a Model

1 Click the 回回 button in the MATLAB Toolstrip or enter simulink at the MATLAB command line. The Simulink library browser appears.

2 Select New $>$ Model from the File menu in the Library Browser. A new model window appears on your screen.
3 Add a Sine Wave block to the model.
a Click Sources in the Library Browser to view the blocks in the Simulink Sources library.
b Drag the Sine Wave block from the Sources library into the new model window.
4 Add a Linear Second-Order Actuator block to the model.
a Click the ${ }^{\square}$ symbol next to Aerospace Blockset in the Library Browser to
expand the hierarchical list of the aerospace blocks.
b In the expanded list, click Actuators to view the blocks in the Actuator library.
c Drag the Linear Second-Order Actuator block into the model window.
5 Add a Mux block to the model.
a Click Signal Routing in the Library Browser to view the blocks in the Simulink Signals \& Systems library.
b Drag the Mux block from the Signal Routing library into the model window.

6 Add a Scope block to the model.
a Click Sinks in the Library Browser to view the blocks in the Simulink Sinks library.
b Drag the Scope block from the Sinks library into the model window.
7 Resize the Mux block in the model.
a Click the Mux block to select the block.
b Hold down the mouse button and drag a corner of the Mux block to change the size of the block.
8 Connect the blocks.
a Position the pointer near the output port of the Sine Wave block. Hold down the mouse button and drag the line that appears until it touches the input port of the Linear Second-Order Actuator block. Release the mouse button.
b Using the same technique, connect the output of the Linear Second-Order Actuator block to the second input port of the Mux block.
c Using the same technique, connect the output of the Mux block to the input port of the Scope block.
d Position the pointer near the first input port of the Mux block. Hold down the mouse button and drag the line that appears over the line from the output port of the Sine Wave block until double crosshairs appear. Release the mouse button. The lines are connected when a knot is present at their intersection.

9 Set the block parameters.
a Double-click the Sine Wave block. The dialog box that appears allows you to set the block's parameters.

For this example, configure the block to generate a $10 \mathrm{rad} / \mathrm{s}$ sine wave by entering 10 for the Frequency parameter. The sinusoid has the default amplitude of 1 and phase of 0 specified by the Amplitude and Phase offset parameters.
b Click OK.

c Double-click the Linear Second-Order Actuator block.
In this example, the actuator has the default natural frequency of $150 \mathrm{rad} /$ s , a damping ratio of 0.7 , and an initial position of 0 radians specified by the Natural frequency, Damping ratio, and Initial position parameters.
d Click OK.

Run the Simulation

You can now run the model that you built to see how the system behaves in time:
1 Double-click the Scope block if the Scope window is not already open on your screen. The Scope window appears.
2 Select Run from the Simulation menu in the model window. The signal containing the $10 \mathrm{rad} / \mathrm{s}$ sinusoid and the signal containing the actuator position are plotted on the scope.
3 Adjust the Scope block's display. While the simulation is running, right-click the y axis of the scope and select Autoscale. The vertical range of the scope is adjusted to better fit the signal.
4 Vary the Sine Wave block parameters.
a While the simulation is running, double-click the Sine Wave block to open its parameter dialog box.
b You can then change the frequency of the sinusoid. Try entering 1 or 20 in the Frequency field. Close the Sine Wave dialog box to enter your change. You can then observe the changes on the scope.
5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is usually the case for parameters that directly or indirectly alter a signal's dimensions or sample rate. However, there are some parameters, like the Sine Wave Frequency parameter, that you can tune without stopping the simulation.

Run a Simulation from a Script

You can also modify and run a Simulink simulation from a script. By doing this, you can automate the variation of model parameters to explore a large number of simulation conditions rapidly and efficiently. For information on how to do this, see "About Programmatic Simulation".

About Aerospace Coordinate Systems

In this section...
"Fundamental Coordinate System Concepts" on page 2-11
"Coordinate Systems for Modeling" on page 2-12
"Coordinate Systems for Navigation" on page 2-15
"Coordinate Systems for Display" on page 2-17
"References" on page 2-19

Fundamental Coordinate System Concepts

Coordinate systems allow you to keep track of an aircraft or spacecraft's position and orientation in space. The Aerospace Blockset coordinate systems are based on these underlying concepts from geodesy, astronomy, and physics.

Definitions

The blockset uses right-handed (RH) Cartesian coordinate systems. The right-hand rule establishes the $x-y-z$ sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. In an inertial frame, Newton's second law holds: force $=$ mass \times acceleration. Loosely speaking, acceleration is defined with respect to the distant cosmos, and an inertial frame is often said to be nonaccelerated with respect to the "fixed stars." Because the Earth and stars move so slowly with respect to one another, this assumption is a very accurate approximation.

Strictly defined, an inertial frame is a member of the set of all frames not accelerating relative to one another. A noninertial frame is any frame accelerating relative to an inertial frame. Its acceleration, in general, includes both translational and rotational components, resulting in pseudoforces (pseudogravity, as well as Coriolis and centrifugal forces).

The blockset models the Earth's shape (the geoid) as an oblate spheroid, a special type of ellipsoid with two longer axes equal (defining the equatorial plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator is the intersection of the equatorial plane and the Earth's surface. The geographic poles are the intersection of the Earth's surface and the geopolar axis. In general, the Earth's geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero longitude or prime meridian passes through Greenwich, England.

Approximations

The blockset makes three standard approximations in defining coordinate systems relative to the Earth.

- The Earth's surface or geoid is an oblate spheroid, defined by its longer equatorial and shorter geopolar axes. In reality, the Earth is slightly deformed with respect to the standard geoid.
- The Earth's rotation axis and equatorial plane are perpendicular, so that the rotation and geopolar axes are identical. In reality, these axes are slightly misaligned, and the equatorial plane wobbles as the Earth rotates. This effect is negligible in most applications.
- The only noninertial effect in Earth-fixed coordinates is due to the Earth's rotation about its axis. This is a rotating, geocentric system. The blockset ignores the Earth's acceleration around the Sun, the Sun's acceleration in the Galaxy, and the Galaxy's acceleration through the cosmos. In most applications, only the Earth's rotation matters.

This approximation must be changed for spacecraft sent into deep space, i.e., outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets

The blockset uses the standard WGS-84 geoid to model the Earth. You can change the equatorial axis length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body that is well approximated by an oblate spheroid by changing the spheroid size, flattening, and rotation rate. If the celestial body is rotating westward (retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling

Modeling aircraft and spacecraft is simplest if you use a coordinate system fixed in the body itself. In the case of aircraft, the forward direction is modified by the presence of wind, and the craft's motion through the air is not the same as its motion relative to the ground.

See "Equations of Motion" for further details on how the Aerospace Blockset product implements body and wind coordinates.

Body Coordinates

The noninertial body coordinate system is fixed in both origin and orientation to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

- The x-axis points through the nose of the craft.
- The y-axis points to the right of the x-axis (facing in the pilot's direction of view), perpendicular to the x-axis.
- The z-axis points down through the bottom the craft, perpendicular to the $x y$ plane and satisfying the RH rule.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles P, Q, R or Φ, Θ, Ψ. They are:

$$
\begin{array}{ll}
P \text { or } \Phi & \text { Roll about the } x \text {-axis } \\
Q \text { or } \Theta & \text { Pitch about the } y \text {-axis } \\
R \text { or } \Psi & \text { Yaw about the } z \text {-axis }
\end{array}
$$

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Wind Coordinates

The noninertial wind coordinate system has its origin fixed in the rigid aircraft. The coordinate system orientation is defined relative to the craft's velocity \boldsymbol{V}.

The orientation of the wind coordinate axes is fixed by the velocity \boldsymbol{V}.

- The x-axis points in the direction of \boldsymbol{V}.
- The y-axis points to the right of the x-axis (facing in the direction of \boldsymbol{V}), perpendicular to the x-axis.
- The z-axis points perpendicular to the $x y$ plane in whatever way needed to satisfy the RH rule with respect to the x - and yaxes.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles Φ, y, X. They are:

```
\Phi Bank angle about the x}x\mathrm{ -axis
Y
Flight path about the y-axis
Heading angle about the z}z\mathrm{ -axis
```


Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Coordinate Systems for Navigation

Modeling aerospace trajectories requires positioning and orienting the aircraft or spacecraft with respect to the rotating Earth. Navigation coordinates are defined with respect to the center and surface of the Earth.

Geocentric and Geodetic Latitudes

The geocentric latitude λ on the Earth's surface is defined by the angle subtended by the radius vector from the Earth's center to the surface point with the equatorial plane.

The geodetic latitude μ on the Earth's surface is defined by the angle subtended by the surface normal vector n and the equatorial plane.

NED Coordinates

The north-east-down (NED) system is a noninertial system with its origin fixed at the aircraft or spacecraft's center of gravity. Its axes are oriented along the geodetic directions defined by the Earth's surface.

- The x-axis points north parallel to the geoid surface, in the polar direction.
- The y-axis points east parallel to the geoid surface, along a latitude curve.
- The z-axis points downward, toward the Earth's surface, antiparallel to the surface's outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth's surface.

ECI Coordinates

The Earth-centered inertial (ECI) system is a mixed inertial system. It is oriented with respect to the Sun. Its origin is fixed at the center of the Earth. (See figure following.)

- The z-axis points northward along the Earth's rotation axis.
- The x-axis points outward in the Earth's equatorial plane exactly at the Sun. (This rule ignores the Sun's oblique angle to the equator, which varies with season. The actual Sun always remains in the $x z$ plane.)
- The y-axis points into the eastward quadrant, perpendicular to the $x z$ plane so as to satisfy the RH rule.

Earth-Centered Coordinates

ECEF Coordinates

The Earth-center, Earth-fixed (ECEF) system is a noninertial system that rotates with the Earth. Its origin is fixed at the center of the Earth. (See figure preceding.)

- The z^{\prime}-axis points northward along the Earth's rotation axis.
- The x^{\prime}-axis points outward along the intersection of the Earth's equatorial plane and prime meridian.
- The y^{\prime}-axis points into the eastward quadrant, perpendicular to the $x-z$ plane so as to satisfy the RH rule.

Coordinate Systems for Display

Several display tools are available for use with the Aerospace Blockset product. Each has a specific coordinate system for rendering motion.

MATLAB Graphics Coordinates

See the "Coordinate System" for more information about the MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

- The x-axis points out of the screen.
- The y-axis points to the right.
- The z-axis points up.

FlightGear Coordinates

FlightGear is an open-source, third-party flight simulator with an interface supported by the blockset.

- "Work with the Flight Simulator Interface" on page 2-26 discusses the blockset interface to FlightGear.
- See the FlightGear documentation at www.flightgear.org for complete information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the standard body coordinate system about the y-axis by -180 degrees:

- The x-axis is positive toward the back of the vehicle.
- The y-axis is positive toward the right of the vehicle.
- The z-axis is positive upward, e.g., wheels typically have the lowest z values.

AC3D Coordinates

AC3D is a low-cost, widely used, geometry editor available from www. ac3d.org. Its body-fixed coordinates are formed by inverting the three standard body coordinate axes:

- The x-axis is positive toward the back of the vehicle.
- The y-axis is positive upward, e.g., wheels typically have the lowest y values.
- The z-axis is positive to the left of the vehicle.

References

Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox documentation, The MathWorks, Inc., Natick, Massachusetts. "Mapping Toolbox".

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA, Reston, Virginia, 2000.

Sobel, D., Longitude, Walker \& Company, New York, 1995.
Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed., Aircraft Control and Simulation, Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley \& Sons, New York, 1961/ Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84), http: / /earth-info.nga.mil/GandG/ wgs84/.

Flight Simulator Interface

In this section...

"About the FlightGear Interface" on page 2-20
"Supported FlightGear Versions" on page 2-20
"Obtain FlightGear" on page 2-21
"Configure Your Computer for FlightGear" on page 2-21
"Install and Start FlightGear" on page 2-24

About the FlightGear Interface

The Aerospace Blockset product supports an interface to the third-party FlightGear flight simulator, open source software available through a GNU General Public License (GPL). The FlightGear flight simulator interface included with the blockset is a unidirectional transmission link from the Simulink interface to FlightGear using the FlightGear published net_fdm binary data exchange protocol. Data is transmitted via UDP network packets to a running instance of FlightGear. The blockset supports multiple standard binary distributions of FlightGear. See "Run FlightGear with the Simulink Models" on page 2-31 for interface details.

FlightGear is a separate software entity neither created, owned, nor maintained by MathWorks.

- To report bugs in or request enhancements to the Aerospace Blockset FlightGear interface, use the form http://www.mathworks.com/contact_TS.html.
- To report bugs or request enhancements to FlightGear itself, visit www.flightgear.org.

Supported FlightGear Versions

The Aerospace Blockset product supports the following FlightGear versions:

- v2.0
- v2.4
- v2.6
- v2.8
- v2.10
- v2.12
- v3.0

You can use Aerospace Blockset Upgrade Advisor checks to identify the blocks in your model that refer to FlightGear versions that the software no longer supports, or that are outdated and will not be supported in a future release. For more information, see "Check model and local libraries for legacy Aerospace Blockset blocks".

Obtain FlightGear

You can obtain FlightGear from www.flightgear. org in the download area or by ordering CDs from FlightGear. The download area contains extensive documentation for installation and configuration. Because FlightGear is an open source project, source downloads are also available for customizing and porting to custom environments.

Configure Your Computer for FlightGear

You must have a high-performance graphics card with stable drivers to use FlightGear. For more information, see the FlightGear CD distribution or the hardware requirements and documentation areas of the FlightGear Web site, www.flightgear.org.

MathWorks tests of FlightGear performance and stability indicate sensitivity to computer video cards, driver versions, and driver settings. You need OpenGL ${ }^{\circledR}$ support with hardware acceleration activated. The OpenGL settings are particularly important. Without proper setup, performance can drop from about a 30 frames-per-second (fps) update rate to less than 1 fps . If your system allows you to update OpenGL settings, modify them to improve performance.

Graphics Recommendations for Windows

For Windows users, use the following graphics recommendations:

- A graphics card with acceptable OpenGL performance (as outlined at the FlightGear Web site, www.flightgear.org).
- The latest tested and stable driver release for your video card. Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows XP systems running on x86 (32-bit) or AMD-64/EM64T chip architectures, the graphics card operates in the unprotected kernel space known as Ring Zero. Problems in the driver can cause the Windows operating system to lock or crash. Before buying a large number of computers for 3-D applications, with your vendor, test one or two computers to find a combination of hardware, operating system, drivers, and settings that are stable for your applications.

For more information, see FlightGear Hardware Recommendations.

Set Up OpenGL Graphics on Windows

For complete information on OpenGL settings, refer to the documentation at the OpenGL Web site: www. opengl.org.

If your system allows you to modify OpenGL, perform steps like the following to optimize your video card settings. Your driver's panes might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on your video card. On Windows, access this configuration through Start > Settings > Control Panel > Display, which opens the following dialog box. Select the Settings tab.

2 Click the Advanced button in the lower right of the dialog box, which brings up the graphics card's custom configuration dialog box, and go to the OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL pane looks like this:

3 For best performance, move the Main Settings slider near the top of the dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known as 65536 color mode, 16 -bit color). For example, on an ATI Mobility Radeon 9000 running a given model, 30 fps are achieved in 16 -bit color mode, while 2 fps are achieved in 32 -bit color mode.

Setup on Linux, Macintosh, and Other Platforms

FlightGear distributions are available for Linux, Macintosh, and other platforms from the FlightGear Web site, www.flightgear. org. Installation on these platforms, like Windows, requires careful configuration of graphics cards and drivers. Consult the documentation and hardware requirements sections at the FlightGear Web site.

Install and Start FlightGear

The extensive FlightGear documentation guides you through the installation in detail. Consult the following:

- Documentation section of the FlightGear Web site for installation instructions: www.flightgear.org.
- MATLAB system requirements.

Keep the following points in mind:

- Configure your computer's graphics card before you install FlightGear. See the preceding section, "Configure Your Computer for FlightGear" on page 2-21.
- Shut down all running applications (including the MATLAB interface) before installing FlightGear.
- MathWorks tests indicate that the operational stability of FlightGear is especially sensitive during startup. It is best to not move, resize, mouse over, overlap, or cover up the FlightGear window until the initial simulation scene appears after the startup splash screen fades out.

Aerospace Blockset supports FlightGear on a number of platforms (http: / / www.mathworks.com/products/aeroblks/requirements.html). The following table lists the properties you should be aware of before you start to use FlightGear.

FlightGear Property	Folder Description	Plafforms	Typical Location
FlightGearBaseDirectory	FlightGear installation folder.	Windows 64bit	C: \Program Files \FlightGear (default)
		Windows 32bit	C: \Program Files (x86) \FlightGear (default)
		Linux	Folder into which you installed FlightGear
		Mac	/Applications (directory to which you dragged the FlightGear icon)
GeometryModelName	Model geometry folder	Windows 64bit	C: \Program Files \FlightGear \data\Aircraft\HL20 (default)

FlightGear Property	Folder Description	Platforms	Typical Location
		Windows 32bit	```C:\Program Files (x86)\- FlightGear\data\Aircraft \HL20 (default)```
		Linux	\$FlightGearBaseDirectory/data/Aircraft/HL20
		Mac	```$FlightGearBaseDirectory/- FlightGear.app/Contents/- Resources/data/Aircraft/- HL2O```

Work with the Flight Simulator Interface

```
In this section...
"Introduction" on page 2-26
"About Aircraft Geometry Models" on page 2-27
"Work with Aircraft Geometry Models" on page 2-29
"Run FlightGear with the Simulink Models" on page 2-31
"Run the NASA HL-20 Example with FlightGear" on page 2-38
"Send and Receive Data" on page 2-41
```


Introduction

Use this section to learn how to use the FlightGear flight simulator and the Aerospace Blockset software to visualize your Simulink aircraft models. If you have not yet installed FlightGear, see "Flight Simulator Interface" on page 2-20 first.

Simulink Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models

Before you can visualize your aircraft's dynamics, you need to create or obtain an aircraft model file compatible with FlightGear. This section explains how to do this.

Aircraft Geometry Editors and Formats

You have a competitive choice of over twelve 3-D geometry file formats supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format, which has the suffix *. ac. AC3D is a low-cost geometry editor available from www. ac3d. org. Another popular 3-D editor for aircraft models is Flight Sim Design Studio, distributed by Abacus Publications at www. abacuspub.com.

Aircraft Model Structure and Requirements

Aircraft models are contained in the FlightGearRoot/data/Aircraft/ folder and subfolders. A complete aircraft model must contain a folder linked through the required aircraft master file named model-set.xml.

All other model elements are optional. This is a partial list of the optional elements you can put in an aircraft data folder:

- Vehicle objects and their shapes and colors
- Vehicle objects' surface bitmaps
- Variable geometry descriptions
- Cockpit instrument 3-D models
- Vehicle sounds to tie to events (e.g., engine, gear, wind noise)
- Flight dynamics model
- Simulator views
- Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For example,

- Default sound: no vehicle-related sounds are emitted.
- Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always run FlightGear from the cockpit view, the aircraft geometry is often secondary to the instrument geometries.

A how-to document for including optional elements is included in the FlightGear documentation at:
http://www.flightgear.org/Docs/fgfs-model-howto.html

Required Flight Dynamics Model Specification

The flight dynamics model (FDM) specification is a required element for an aircraft model. To set the Simulink software as the source of the flight dynamics model data stream for a given geometry model, you put this line in data/Aircraft/model/modelset.xml:
<flight-model>network</flight-model>

Obtain and Modify Existing Aircraft Models

You can quickly build models from scratch by referencing instruments, sounds, and other optional elements from existing FlightGear models. Such models provide examples of geometry, dynamics, instruments, views, and sounds. It is simple to copy an aircraft folder to a new name, rename the model-set.xml file, modify it for network flight dynamics, and then run FlightGear with the -aircraft flag set to the name in modelset.xml.

Many existing 3-D aircraft geometry models are available for use with FlightGear. Visit the download area of www.flightgear.org to see some of the aircraft models available. Additional models can be obtained via Web search. Search key words such as "flight gear aircraft model" are a good starting point. Be sure to comply with copyrights when distributing these files.

Hardware Requirements for Aircraft Geometry Rendering

When creating your own geometry files, keep in mind that your graphics card can efficiently render a limited number of surfaces. Some cards can efficiently render fewer than 1000 surfaces with bitmaps and specular reflections at the nominal rate of 30 frames per second. Other cards can easily render on the order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect of geometric complexity on graphics performance by varying the number of aircraft model
surfaces. An easy way to check this is to replace the full aircraft geometry file with a simple shape, such as a single triangle, then test FlightGear with this simpler geometry. If a geometry file is too complex for smooth display, use a 3-D geometry editor to simplify your model by reducing the number of surfaces in the geometry.

Work with Aircraft Geometry Models

Once you have obtained, modified, or created an aircraft data file, you need to put it in the correct folder for FlightGear to access it.

Import Aircraft Models into FlightGear

To install a compatible model into FlightGear, use one of the following procedures. Choose the one appropriate for your platform. This section assumes that you have read "Install and Start FlightGear" on page 2-24.

If your platform is Windows:
1 Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder: \FlightGear\data \Aircraft\.

2 Make a subfolder model here for your aircraft data.
3 Put model-set.xml in that subfolder, plus any other files needed.
It is common practice to make subdirectories for the vehicle geometry files (\backslash model \backslash), instruments (\instruments
), and sounds (\backslash sounds \backslash).

If your platform is Linux:
1 Go to your installed FlightGear directory. Open the data directory, then the Aircraft directory: \$FlightGearBaseDirectory/data/Aircraft/.
2 Make a subdirectory model/ here for your aircraft data.
3 Put model-set.xml in that subdirectory, plus any other files needed.
It is common practice to make subdirectories for the vehicle geometry files (/ model/), instruments (/instruments/), and sounds (/sounds/).

If your platform is Mac:
1 Open a terminal.

2 Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:
\$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/
3 Make a subfolder model/ here for your aircraft data.
4 Put model-set.xml in that subfolder, plus any other files needed.
It is common practice to make subdirectories for the vehicle geometry files (/ model/), instruments (/instruments/), and sounds (/sounds/).

Example: Animate Vehicle Geometries

This example illustrates how to prepare hinge line definitions for animated elements such as vehicle control surfaces and landing gear. To enable animation, each element must be a named entity in a geometry file. The resulting code forms part of the HL20 lifting body model presented in "Run the NASA HL-20 Example with FlightGear" on page 2-38.

1 The standard body coordinates used in FlightGear geometry models form a righthanded system, rotated from the standard body coordinate system in Y by -180 degrees:

- $X=$ positive toward the back of the vehicle
- $Y=$ positive toward the right of the vehicle
- $Z=$ positive is up, e.g., wheels typically have the lowest Z values.

See "About Aerospace Coordinate Systems" on page 2-11 for more details.
2 Find two points that lie on the desired named-object hinge line in body coordinates and write them down as $X Y Z$ triplets or put them into a MATLAB calculation like this:

```
a = [2.98, 1.89, 0.53];
b = [3.54, 2.75, 1.46];
```

3 Calculate the difference between the points:

```
pdiff = b - a
pdiff =
    0.5600 0.8600 0.9300
```

4 The hinge point is either of the points in step 2 (or the midpoint as shown here):

```
mid = a + pdiff/2
```

mid $=$
$3.2600 \quad 2.3200 \quad 0.9950$
5 Put the hinge point into the animation scope in model-set.xml:

```
<center>
    <x-m>3.26</x-m>
    <y-m>2.32</y-m>
    <z-m>1.00</z-m>
</center>
```

6 Use the difference from step 3 to define the relative motion vector in the animation axis:

```
<axis>
    <x>0.56</x>
    <y>0.86</y>
    <z>0.93</z>
</axis>
```

7 Put these steps together to obtain the complete hinge line animation used in the HL20 example model:

```
<animation>
    <type>rotate</type>
    <object-name>RightAileron</object-name>
    <property>/surface-positions/right-aileron-pos-norm</property>
    <factor>30</factor>
    <offset-deg>0</offset-deg>
    <center>
    <x-m>3.26</x-m>
    <y-m>2.32</y-m>
    <z-m>1.00</z-m>
    </center>
    <axis>
    <x>0.56</x>
    <y>0.86</y>
    <z>0.93</z>
    </axis>
</animation>
```


Run FlightGear with the Simulink Models

To run a Simulink model of your aircraft and simultaneously animate it in FlightGear with an aircraft data file model-set.xml, you need to configure the aircraft data file and modify your Simulink model with some new blocks.

These are the main steps to connecting and using FlightGear with the Simulink software:

- "Set the Flight Dynamics Model to Network in the Aircraft Data File" on page 2-32 explains how to create the network connection you need.
- "Obtain the Destination IP Address" on page 2-32 starts by determining the IP address of the computer running FlightGear.
- "Send Simulink Data to FlightGear" on page 2-41 shows how to add and connect interface and pace blocks to your Simulink model.
- "Create a FlightGear Run Script" on page 2-33 shows how to write a FlightGear run script compatible with your Simulink model.
- "Start FlightGear" on page 2-35 guides you through the final steps to making the Simulink software work with FlightGear.
- "Improve Performance" on page 2-37 helps you speed your model up.
- "Run FlightGear and Simulink Software on Different Computers" on page 2-37 explains how to connect a simulation from the Simulink software running on one computer to FlightGear running on another computer.

Set the Flight Dynamics Model to Network in the Aircraft Data File

Be sure to:

- Remove any pre-existing flight dynamics model (FDM) data from the aircraft data file.
- Indicate in the aircraft data file that its FDM is streaming from the network by adding this line:

```
<flight-model>network</flight-model>
```


Obtain the Destination IP Address

You need the destination IP address for your Simulink model to stream its flight data to FlightGear.

- If you know your computer's name, enter at the MATLAB command line:
java.net.InetAddress.getByName('www.mathworks.com')
- If you are running FlightGear and the Simulink software on the same computer, get your computer's name by entering at the MATLAB command line:
java.net.InetAddress.getLocalHost
- If you are working in Windows, get your computer's IP address by entering at the DOS prompt:
ipconfig /all
Examine the IP address entry in the resulting output. There is one entry per Ethernet device.

Create a FlightGear Run Script

To start FlightGear with the desired initial conditions (location, date, time, weather, operating modes), it is best to create a run script by "Use the Generate Run Script Block" on page 2-33 or "Use the Interface Provided with FlightGear" on page 2-35.

If you make separate run scripts for each model you intend to link to FlightGear and place them in separate directories, run the appropriate script from the MATLAB interface just before starting your Simulink model.

Use the Generate Run Script Block

The easiest way to create a run script is by using the Generate Run Script block. Use the following procedure:

1 Open the Flight Simulator Interfaces sublibrary.
2 Create a new Simulink model or open an existing model.
3 Drag a Generate Run Script block into the Simulink diagram.
4 Double-click the Generate Run Script block. Its dialog opens. Observe the three panes, FlightGear, Network, and File.

W Block Parameters: Generate Run Script					\underline{x}
Generate FlightGear Run Script					
Generate a custom FlightGear run script file on the current platform.					
To generate the run script, fill in the information then press Generate Script. Items marked with an asterisk (*) are evaluated as MATLAB expressions, the rest of the fields are literal text.					
Parameters					
Select target architecture:		Default		\checkmark	
Select FlightGear data flow:		Send		-	
Generate Script					
FlightGear \quad Network					
FlightGear geometry model name:					
HL20					
Airport ID:					
KSFO					
Runway ID:					
10L					
Initial altitude (ft)*:					
7224					
Initial heading (deg)*:					
113					
Offset distance (miles)*:					
4.72					
Offset azimuth (deg)*:					
0					
	OK	Cancel	Help	Apply	

5 In the File $>$ Output file name field, type the name of the output file. This name should be the name of the command you want to use to start FlightGear with these initial parameters. Use the appropriate file extension:

Plafform	Extension
Windows	.bat
Linux and Mac OS	.sh

For example, if your file name is runfg.bat, use the runfg command to execute the run script and start FlightGear.
6 In the File > FlightGear base directory field, specify the name of your FlightGear installation folder.

7 In the File > FlightGear geometry model name field, specify the name of the subfolder, in the FlightGear/data/Aircraft folder, containing the desired model geometry.
8 Specify the initial conditions as needed.
9 Click the Generate Script button at the top of the Parameters area.
The Aerospace Blockset software generates the run script, and saves it in your MATLAB working folder under the file name that you specified in the File $>$ Output file name field.

10 Repeat steps 5 through 9 to generate other run scripts, if needed.
11 Click OK to close the dialog box. You do not need to save the Generate Run Script block with the Simulink model.

The Generate Run Script block saves the run script as a text file in your working folder. This is an example of the contents of a run script file:

```
>> cd D:\Applications\FlightGear-3.0
>> SET FG_ROOT=D:\Applications\FlightGear-3.0\data
>> cd \bin\Win32\
>> fgfs --aircraft=HL20 --fdm=network,localhost,5501,5502,5503
    --fog-fastest --disable-clouds --start-date-lat=2004:06:01:09:00:00
    --disable-sound --in-air --enable-freeze --airport=KSF0 --runway=10L
    --altitude=7224 --heading=113 --offset-distance=4.72 - -offset-azimuth=0
```


Use the Interface Provided with FlightGear

The FlightGear launcher GUI (part of FlightGear, not the Aerospace Blockset product) lets you build simple and advanced options into a visible FlightGear run command.

Start FlightGear

If your computer has enough computational power to run both the Simulink software and FlightGear at the same time, a simple way to start FlightGear on a Windows system is to create a MATLAB desktop button containing the following command to execute a run script like the one created above:

```
system('runfg &')
```

To create a desktop button:

1 In the MATLAB Command Window, select Shortcuts and click New Shortcut. The Shortcut Editor dialog opens.
2 Set the Label, Callback, Category, and Icon fields as shown in the following figure.

3 Click Save.
The FlightGear button appears in your MATLAB desktop. If you click it, the output file, for example runfg.bat, runs in the current folder.

FlightGear button

Once you have completed the setup, start FlightGear and run your model:
1 Make sure your model is in a writable folder. Open the model, and update the diagram. This step ensures that any referenced block code is compiled and that the
block diagram is compiled before running. Once you start FlightGear, it uses all available processor power while it is running.
2 Click the FlightGear button or run the FlightGear run script manually.
3 When FlightGear starts, it displays the initial view at the initial coordinates specified in the run script. If you are running the Simulink software and FlightGear on different computers, arrange to view the two displays at the same time.
4 Now begin the simulation and view the animation in FlightGear.

Improve Performance

If your Simulink model is complex and cannot run at the aggregate rate needed for the visualization, you might need to

- Use the Accelerator mode in Simulink ("Perform Acceleration".)
- Free up processor power by running the Simulink model on one computer and FlightGear on another computer. Use the Destination IP Address parameter of the Send net_fdm Packet to FlightGear block to specify the network address of the computer where FlightGear is running.
- Simulate the Simulink model first, then save the resulting translations (x-axis, y-axis, z-axis) and positions (latitude, longitude, altitude), and use the FlightGear Animation object in Aerospace Toolbox to visualize this data.

Tip If FlightGear uses more computer resources than you want, you can change its scheduling priority to a lesser one. For example, see commands like Windows start and Linux nice or their equivalents.

Run FlightGear and Simulink Software on Different Computers

It is possible to simulate an aerospace system in the Simulink environment on one computer (the source) and use its simulation output to animate FlightGear on another computer (the target). The steps are similar to those already explained, with certain modifications.

1 Obtain the IP address of the computer running FlightGear. See "Obtain the Destination IP Address" on page 2-32.

2 Enter this target computer's IP address in the Send net_fdm Packet to FlightGear block. See "Send Simulink Data to FlightGear" on page 2-41.

3 Update the Generate Run Script block in your model with the target computer's FlightGear base folder. Regenerate the run script to reflect the target computer's separate identity.

See "Create a FlightGear Run Script" on page 2-33.
4 Copy the generated run script to the target computer. Start FlightGear there. See "Start FlightGear" on page 2-35.
5 If you want to also receive data from FlightGear, use the Receive net_ctrl Packet from FlightGear block. Enter the IP address of the computer running FlightGear in the Origin IP address parameter.
6 Update the run script for the receive data. Use the Generate Run Script block to regenerate the run script.
7 Start your Simulink model on the source computer. FlightGear running on the target displays the simulation motion.

Install Additional FlightGear Scenery

When you install the FlightGear software, the installation provides a basic level of scenery files. The FlightGear documentation guides you through installing scenery as part the general FlightGear installation.

If you need to install more FlightGear scenery files, see the instructions at http: / / www.flightgear.org. The instructions describe how to install the additional scenery in a default location. MathWorks recommends that you follow those instructions.

If you must install additional scenery in a nonstandard location, try setting the FG_SCENERY environment variable in the script output from the Generate Run Script block. See the documentation at http: / /www.flightgear.org for a description of the FG_SCENERY variable.

Note: Each time that you click the Generate Script button, the Generate Run Script block creates a new script and overwrites any edits that you have added.

Run the NASA HL-20 Example with FlightGear

The Aerospace Blockset software contains an example model of the NASA HL-20 lifting body that uses the FlightGear interface. This example illustrates many features of the Aerospace Blockset software. It also contains a Variant Subsystem block that
you can use to specify the data source for the simulation. You might want to use the Variant Subsystem block to change the terrain data source or if you do not want to use FlightGear but still want to simulate the model.

To install and configure FlightGear before attempting to simulate this model, see "Flight Simulator Interface" on page 2-20. Also, before attempting to simulate this model, read "Install and Start FlightGear" on page 2-24. Before you start, perform the following actions, depending on your platform.

Windows
Copy the HL20 folder from matlabroot \toolbox \aeroblks \aerodemos \ folder to FlightGear \data \Aircraft \folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file
 the geometry.

For more information, see "Import Aircraft Models into FlightGear" on page 2-29. Linux

Copy the HL20 directory from matlabroot/toolbox/aeroblks/aerodemos/ directory to \$FlightGearBaseDirectory - / data/Aircraft/ directory. This directory contains the preconfigured geometries for the HL-20 simulation and HL20set.xml. The file matlabroot/toolbox/aeroblks/aerodemos/HL20/models/ HL20.xml defines the geometry.

For more about this step, see "Import Aircraft Models into FlightGear" on page 2-29.
Mac
Copy the HL20 folder from matlabroot/toolbox/aeroblks / aerodemos / folder to \$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/ folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file matlabroot \backslash toolbox \backslash aeroblks \aerodemos $\backslash H L 20 \backslash$ models $\backslash H L 20 . x m l$ defines the geometry.

For more about this step, see "Import Aircraft Models into FlightGear" on page 2-29.

1 Start the MATLAB interface. Open the example either by entering asbhl20 in the MATLAB Command Window or by finding the example entry (NASA HL-20 with FlightGear Interface) in the Aerospace Blockset Examples page. The model opens.

2 If this is your first time running FlightGear for this model, you need to create and run a customized FlightGear run script. You can do this with one of the following:

- In the model, double-click the Run FlightGear block and follow the steps in the block. Initially, this block is red. As you follow the steps outlined in the block, the block mask changes.

To start FlightGear for the model, click Launch HL20 in FlightGear.

- Double-click the Generate Run Script block to create a run script. Make sure to specify your FlightGear installation folder in the File > FlightGear base directory field. For more information, see "Create a FlightGear Run Script" on page 2-33.

Execute the script you just created manually by entering the following at the MATLAB command line:
system('runfg \& ')
If you created a FlightGear desktop button, you can click it instead to start the run script and start FlightGear. For more information, see "Start FlightGear" on page 2-35.
3 Now start the simulation and view the animation in FlightGear.

Note: With the FlightGear window in focus, press the \mathbf{V} key to alternate between the different aircraft views: cockpit view, helicopter view, chase view, and so on.

Send and Receive Data

You can send and receive data between a Simulink model and a running FlightGear Flight Simulator.

Send Simulink Data to FlightGear

The easiest way to connect your model to FlightGear with the blockset is to use the FlightGear Preconfigured 6DoF Animation block:

The FlightGear Preconfigured 6DoF Animation block is a subsystem containing the Pack net_fdm Packet for FlightGear and Send net_fdm Packet to FlightGear blocks:

These blocks transmit data from a model to a FlightGear session. The blocks are separate for maximum flexibility and compatibility.

- The Pack net_fdm Packet for FlightGear block formats a binary structure compatible with FlightGear from model inputs. In the default configuration, the block displays only the 6 DoF ports, but you can configure the full FlightGear interface supporting more than 50 distinct signals from the block dialog box:

- The Send net_fdm Packet to FlightGear block transmits this packet via UDP to the specified IP address and port where a FlightGear session awaits an incoming datastream. Use the IP address you found in "Obtain the Destination IP Address" on page 2-32.
- The Simulation Pace block slows the simulation so that its aggregate run rate is 1 second of simulation time per second of clock time. You can also use it to specify other ratios of simulation time to clock time.

Send FlightGear Data to Model

To increase the accuracy of your model simulation, you might want to send FlightGear environment variables to the Simulink model. Use the following blocks:

- Receive net_ctrl Packet from FlightGear - Receives a network control and environment data packet net_ctrl from either the simulation of a Simulink model in the FlightGear simulator, or from a FlightGear session.
- Unpack net_ctrl Packet from FlightGear - Unpacks net_ctrl variable packets received from FlightGear and makes them available for the Simulink environment.
- Generate Run Script - Generates a customized FlightGear run script on the current platform.

For an example of how to use these blocks to send data to a Simulink model, see NASA HL-20 with FlightGear Interface.

These blocks use UDP to transfer data from FlightGear to the Simulink environment. Note the following:

- When a host and target are Windows or Linux platforms, you can use any combination of Windows or Linux platforms for the host and target.
- When a host or target is a Mac platform, use only Mac platforms for both the host and target.

Macintosh Plafform and FlightGear Version 2.6 or Later

On a Macintosh system with FlightGear v2.6 or later, you might see unexpected results (for example, very large or very small data values) if your model uses the following blocks:

- Receive net_ctrl Packet from FlightGear
- Unpack net_ctrl Packet from FlightGear

To work around this issue:
1 In the model, change the FlightGear version parameter to v2. 4 for both blocks.
2 Save and rerun the model.
The results should now be as expected.

Simulink Projects Template for Flight Simulation Applications

Flight Simulation Applications

Use "Simulink Projects" to help organize large flight simulation modeling projects and makes it easier to share projects with others.

The Aerospace Blockset software supplies a Simulink projects template that you can use to create your own flight simulation application. This template uses variant subsystems, model variants, and referenced models to implement flight simulation application components such as:

- An airframe that contains a 6DOF equation of motion environment model and actuator dynamics
- An inertial measurement unit (IMU) sensor model
- A visualization subsystem oriented for FlightGear
- A model of the nonlinear dynamics of the airframe
- A model of the linear dynamics of the airframe

Download the Flight Simulation Template

1 In MATLAB, select New > Simulink Project > Flight Simulation Example.
2 In Simulink Project, in Project name, enter a project name, for example FlightSimProj.

3 In Project folder, enter a project folder or browse to the folder to contain the project, for example FlightSimFolder.

4 Click Create.

If the folder does not exist, the dialog prompts you to create it. Click Yes.
The software compiles the project, populates the project folders, and opens the main model, flightSimulation. All models and supporting files are in place for you to customize for your flight simulation application.

The flight simulation project template contains the following folders

- controller

Contains the models for the Flight Control System (FCS) and its design. These models contain referenced models for different controller architectures needed for the design of aircraft simulation.

- libraries

Contains the libraries used by the models.

- linearAirframe

Contains the linear dynamics of the airframe.

- mainModels

Contains the top-level simulation model, flightSimulation.

- nonlinearAirframe

Contains a model of the nonlinear dynamics of the airframe.

- src

Contains C code. For simulation, it also has two folders that contain S-functions for simulation.

- tasks

Contains scripts to run the model. These scripts do not run continuously during the simulation process.

- tests

Contains a sample test harness, including a test file, linearTest, and a script, runProjectTests, that runs the designated tests in the project.

- utilities

Contains project-specific maintenance task utilities.

- work

Contains files generated from every run. These files derive from source files, such as the MEX-file that you build from S -function C code.

In Shortcuts, Simulink projects creates shortcuts for common tasks such as:

- Set up and clean up projects.
- Add projects to MATLAB paths.
- Initialize variables.
- Rebuild S-functions.
- Run project tests.
- Start the top model.

Add Airframe Dynamics and Controller Algorithm to the Project

1 To open the linearAirframe model, in flightSimulation double-click the Airframe subsystem.
2 Double-click the Nonlinear subsystem.
3 In the AC model, add your airframe dynamics.
4 Save the model.

Add Controller Algorithm to the Project

1 To open the flightControlSystem model, in flightSimulation, double-click the FCS subsystem.
2 In the Controller subsystem, add your controller algorithm.
3 Save the model.
Other things to try:

- Simulate your model.
- Explore the tests folder for sample tests for your application.

Relared Examples

- "Create a New Project Using Templates"
- Quadcopter Project

Case Studies

- "Ideal Airspeed Correction" on page 3-2
- "1903 Wright Flyer" on page 3-8
- "NASA HL-20 Lifting Body Airframe" on page 3-17

Ideal Airspeed Correction

```
In this section...
"Introduction" on page 3-2
"Airspeed Correction Models" on page 3-2
"Measure Airspeed" on page 3-3
"Model Airspeed Correction" on page 3-4
"Simulate Airspeed Correction" on page 3-6
```


Introduction

This case study simulates indicated and true airspeed. It constitutes a fragment of a complete aerodynamics problem, including only measurement and calibration.

Airspeed Correction Models

To view the airspeed correction models, enter the following at the MATLAB command line:

```
aeroblk_indicated
```

aeroblk_calibrated

[^0]

aeroblk_calibrated Model

Measure Airspeed

To measure airspeed, most light aircraft designs implement pitot-static airspeed indicators based on Bernoulli's principle. Pitot-static airspeed indicators measure airspeed by an expandable capsule that expands and contracts with increasing and decreasing dynamic pressure. This is known as calibrated airspeed (CAS). It is what a pilot sees in the cockpit of an aircraft.

To compensate for measurement errors, it helps to distinguish three types of airspeed. These types are explained more completely in the following.

Airspeed Type	Description
Calibrated	Indicated airspeed corrected for calibration error
Equivalent	Calibrated airspeed corrected for compressibility error
True	Equivalent airspeed corrected for density error

Calibration Error

An airspeed sensor features a static vent to maintain its internal pressure equal to atmospheric pressure. Position and placement of the static vent with respect to the angle of attack and velocity of the aircraft determines the pressure inside the airspeed sensor and therefore the calibration error. Thus, a calibration error is specific to an aircraft's design.

An airspeed calibration table, which is usually included in the pilot operating handbook or other aircraft documentation, helps pilots convert the indicated airspeed to the calibrated airspeed.

Compressibility Error

The density of air is not constant, and the compressibility of air increases with altitude and airspeed, or when contained in a restricted volume. A pitot-static airspeed sensor contains a restricted volume of air. At high altitudes and high airspeeds, calibrated airspeed is always higher than equivalent airspeed. Equivalent airspeed can be derived by adjusting the calibrated airspeed for compressibility error.

Density Error

At high altitudes, airspeed indicators read lower than true airspeed because the air density is lower. True airspeed represents the compensation of equivalent airspeed for the density error, the difference in air density at altitude from the air density at sea level, in a standard atmosphere.

Model Airspeed Correction

The aeroblk_indicated and aeroblk_calibrated models show how to take true airspeed and correct it to indicated airspeed for instrument display in a Cessna 150M Commuter light aircraft. The aeroblk_indicated model implements a conversion to indicated airspeed. The aeroblk_calibrated model implements a conversion to true airspeed.

Each model consists of two main components:

- "COESA Atmosphere Model Block" on page 3-4 calculates the change in atmospheric conditions with changing altitude.
- "Ideal Airspeed Correction Block" on page 3-5 transforms true airspeed to calibrated airspeed and vice versa.

COESA Atmosphere Model Block

The COESA Atmosphere Model block is a mathematical representation of the U.S. 1976 COESA (Committee on Extension to the Standard Atmosphere) standard lower atmospheric values for absolute temperature, pressure, density, and speed of sound for input geopotential altitude. Below 32,000 meters (104,987 feet), the U.S. Standard Atmosphere is identical with the Standard Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA Atmosphere Model block to supply the speed of sound and air pressure inputs for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block

The Ideal Airspeed Correction block compensates for airspeed measurement errors to convert airspeed from one type to another type. The following table contains the Ideal Airspeed Correction block's inputs and outputs.

Airspeed Input	Airspeed Output
True Airspeed	Equivalent airspeed Equivalent Airspeed
Calibrated airspeed	
Calibrated Airspeed	True airspeed
	Calibrated airspeed
	True airspeed
	Equivalent airspeed

In the aeroblk_indicated model, the Ideal Airspeed Correction block transforms true to calibrated airspeed. In the aeroblk_calibrated model, the Ideal Airspeed Correction block transforms calibrated to true airspeed.

The following sections explain how the Ideal Airspeed Correction block mathematically represents airspeed transformations:

- "True Airspeed Implementation" on page 3-5
- "Calibrated Airspeed Implementation" on page 3-6
- "Equivalent Airspeed Implementation" on page 3-6

True Airspeed Implementation

True airspeed (TAS) is implemented as an input and as a function of equivalent airspeed (EAS), expressible as

$$
T A S=\frac{E A S \times a}{a_{0} \sqrt{\delta}}
$$

where

\boldsymbol{a}	Speed of sound at altitude in m / s
δ	Relative pressure ratio at altitude
a_{0}	Speed of sound at mean sea level in m / s

Calibrated Airspeed Implementation

Calibrated airspeed (CAS), derived using the compressible form of Bernoulli's equation and assuming isentropic conditions, can be expressed as

$$
C A S=\sqrt{\frac{2 \gamma P_{0}}{(\gamma-1) \rho_{0}}\left[\left(\frac{q}{P_{0}}+1\right)^{(\gamma-1) / \gamma}-1\right]}
$$

where

ρ_{0}	Air density at mean sea level in $\mathrm{kg} / \mathrm{m}^{3}$
P_{0}	Static pressure at mean sea level in $\mathrm{N} / \mathrm{m}^{2}$
γ	Ratio of specific heats
q	Dynamic pressure at mean sea level in $\mathrm{N} / \mathrm{m}^{2}$

Equivalent Airspeed Implementation

Equivalent airspeed (EAS) is the same as CAS, except static pressure at sea level is replaced by static pressure at altitude.

$$
E A S=\sqrt{\frac{2 \gamma P}{(\gamma-1) \rho_{0}}\left[\left(\frac{q}{P}+1\right)^{(\gamma-1) / \gamma}-1\right]}
$$

The symbols are defined as follows:

ρ_{0}	Air density at mean sea level in $\mathrm{kg} / \mathrm{m}^{3}$
P	Static pressure at altitude in $\mathrm{N} / \mathrm{m}^{2}$
γ	Ratio of specific heats
q	Dynamic pressure at mean sea level in $\mathrm{N} / \mathrm{m}^{2}$

Simulate Airspeed Correction

In the aeroblk_indicated model, the aircraft is defined to be traveling at a constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps are set to 40 degrees. The

COESA Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure. Taking the speed of sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS subsystem uses the flap setting and calibrated airspeed to calculate indicated airspeed.

The model's Display block shows both indicated and calibrated airspeeds.

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The flaps are set to 10 degrees. The COESA Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure. The Calculate CAS subsystem uses the flap setting and indicated airspeed to calculate the calibrated airspeed. Finally, using the speed of sound, air pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction block converts calibrated airspeed back to true airspeed.

The model's Display block shows both calibrated and true airspeeds.

1903 Wright Flyer

```
In this section...
"Introduction" on page 3-8
"Wright Flyer Model" on page 3-9
"Airframe Subsystem" on page 3-9
"Environment Subsystem" on page 3-12
"Pilot Subsystem" on page 3-13
"Run the Simulation" on page 3-14
"References" on page 3-15
```


Introduction

Note The final section of this study requires the Simulink 3D Animation software.

This case study describes a model of the 1903 Wright Flyer. Built by Orville and Wilbur Wright, the Wright Flyer took to the skies in December 1903 and opened the age of controlled flight. The Wright brothers' flying machine achieved the following goals:

- Left the ground under its own power
- Moved forward and maintained its speed
- Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal stability of the Wright Flyer and therefore modeled only forward and vertical motion along with the pitch angle. The Wright Flyer suffered from numerous engineering challenges, including dynamic and static instability. Laterally, the Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch angle would undulate [2].

Under these constraints, the model recreates the longitudinal flight dynamics that pilots of the Wright Flyer would have experienced. Because they were able to control lateral motion, Orville and Wilbur Wright were able to maintain a relatively straight flight path.

Note, running this model generates information messages in the MATLAB Command Window and assertion warning messages in the Diagnostic Viewer. This is because the
model illustrates the use of the Assertion block to indicate that the flyer is hitting the ground when landing.

Wright Flyer Model

Open the Wright Flyer model by entering aeroblk_wf_3dof at the MATLAB command line.

Airframe Subsystem

The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer airframe, including elevator angle of attack, aerodynamic coefficients, forces and moments, and three-degrees-of-freedom equations of motion.

The Airframe subsystem consists of the following parts:

- "Elevator Angle of Attack Subsystem" on page 3-10
- "Aerodynamic Coefficients Subsystem" on page 3-10
- "Forces and Moments Subsystem" on page 3-11
- "3DOF (Body Axes) Block" on page 3-11

Elevator Angle of Attack Subsystem

The Elevator Angle of Attack subsystem calculates the effective elevator angle for the Wright Flyer airframe and feeds its output to the Pilot subsystem.

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the aerodynamic coefficients, which are summed and passed to the Forces and Moments subsystem. Stored in data sets, the aerodynamic coefficients are determined by interpolation using Prelookup blocks.

Forces and Moments Subsystem

The aerodynamic forces and moments acting on the airframe are generated from aerodynamic coefficients. The Forces and Moments subsystem calculates the body forces and body moments acting on the airframe about the center of gravity. These forces and moments depend on the aerodynamic coefficients, thrust, dynamic pressure, and reference airframe parameters.

3DOF (Body Axes) Block

The 3DOF (Body Axes) block use equations of motion to define the linear and angular motion of the Wright Flyer airframe. It also performs conversions from the original model's axis system and the body axes.

Function Block Parameters: 3DoF (Body Axes)
3DoF EoM (mask) (link)
Integrate the three-degrees-offfreedom equations of motion to
determine body position, velocity, attitude, and related values.
Parameters
Units: English (Velocity in ft/s)
Mass type: Fixed
Initial velocity:
47.26
Initial body attitude:
-(wf_alphaa-wf_incidence)*pi/180
Initial incidence:
wf_alphaa*pi/180
Initial body rotation rate:
wf_q
Initial position (x z):
[0-0.1]
Initial mass:
wf_weight/wf_gravity
Inertia:
wf_inertia
Gravity source: External
Cancel

3DOF (Body Axes) Block Parameters

Environment Subsystem

The first and final flights of the Wright Flyer occurred on December 17, 1903. Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina, situated near the Atlantic coast. Wind gusts of more than 25 miles per hour were recorded that day. After the final flight on that blustery December day, a wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of blocks from the Environment sublibrary of the Aerospace Blockset software, including wind, atmosphere, and gravity, and calculates airspeed and dynamic pressure. The Discrete

Wind Gust Model block provides wind gusts to the simulated environment. The other blocks are

- The Incidence \& Airspeed block calculates the angle of attack and airspeed.
- The COESA Atmosphere Model block calculates the air density.
- The Dynamic Pressure block computes the dynamic pressure from the air density and velocity.
- The WGS84 Gravity Model block produces the gravity at the Wright Flyer's latitude, longitude, and height.

Pilot Subsystem

The Pilot subsystem controls the aircraft by responding to both pitch angle (attitude) and angle of attack. If the angle of attack differs from the set angle of attack by more than one degree, the Pilot subsystem responds with a correction of the elevator (canard) angle. When the angular velocity exceeds $+/-0.02 \mathrm{rad} / \mathrm{s}$, angular velocity and angular acceleration are also taken into consideration with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an automatic controller, a reaction time of 0.06 seconds is optimal for successful flight. The Delay of Pilot (Variable Time Delay) block recreates this effect by producing a delay of no more than 0.08 second.

Run the Simulation

The default values for this simulation allow the Wright Flyer model to take off and land successfully. The pilot reaction time (wf_B3) is set to 0.06 seconds, the desired angle of attack (wf_alphaa) is constant, and the altitude attained is low. The Wright Flyer model reacts similarly to the actual Wright Flyer. It leaves the ground, moves forward, and lands on a point as high as that from which it started. This model exhibits the longitudinal undulation in attitude of the original aircraft.

Attitude Scope (Measured in Radians)

A pilot with quick reaction times and ideal flight conditions makes it possible to fly the Wright Flyer successfully. The Wright Flyer model confirms that controlling its longitudinal motion was a serious challenge. The longest recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Simulink 3D Animation.

The Wright Flyer model also provides a virtual world visualization, coded in Virtual Reality Modeling Language (VRML) [3]. The VR Sink block in the main model allows you to view the flight motion in three dimensions.

1903 Wright Flyer Virtual Reality World

References

[1] Hooven, Frederick J., "Longitudinal Dynamics of the Wright Brothers' Early Flyers: A Study in Computer Simulation of Flight," from The Wright Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian Institution Press, 1987.
[2] Culick, F. E. C. and H. R. Jex, "Aerodynamics, Stability, and Control of the 1903 Wright Flyer," from The Wright Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian Institution Press, 1987.
[3] Thaddeus Beier created the initial Wright Flyer model in Inventor format, and Timothy Rohaly converted it to VRML.

Additional Information About the 1903 Wright Flyer

- http://www.wrightexperience.com
- http://wright.nasa.gov

NASA HL-20 Liffing Body Airframe

In this section...
"Introduction" on page 3-17
"NASA HL-20 Lifting Body" on page 3-17
"The HL-20 Airframe and Controller Model" on page 3-18
"References" on page 3-28

Introduction

This case study models the airframe of a NASA HL-20 lifting body, a low-cost complement to the Space Shuttle orbiter. The HL-20 is unpowered, but the model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be modeled, simulated, and analyzed. Ideally, this airframe should be modeled quickly, reusing blocks or model structure to reduce validation time and leave more time available for control design. In this study, the Aerospace Blockset software efficiently models portions of the HL-20 airframe. The remaining portions, including calculation of the aerodynamic coefficients, are modeled with the Simulink software. This case study examines the HL-20 airframe model and touches on how the aerodynamic data are used in the model.

NASA HL-20 Liffing Body

The HL-20, also known as the Personnel Launch System (PLS), is a lifting body reentry vehicle designed to complement the Space Shuttle orbiter. It was developed originally as a low-cost solution for getting to and from low Earth orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically with booster rockets or by transporting it in the payload bay of the Space Shuttle orbiter. The HL-20 lifting body deorbits using a small onboard propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

- Rapid turnaround between landing and launch reduces operating costs.
- The HL-20 has exceptional flight safety.
- It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

- Orbital rescue of stranded astronauts
- International Space Station crew exchanges
- Observation missions
- Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data from HL-20 tests are being used in current NASA projects [2].

The HL-20 Airframe and Controller Model

You can open the HL-20 airframe and controller model by entering aeroblk_HL20 at the MATLAB command line.

Modeling Assumptions and Limitations

Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

- The airframe is assumed to be rigid and have constant mass, center of gravity, and inertia, since the model represents only the unpowered reentry portion of a mission.
- HL-20 is assumed to be a laterally symmetric vehicle.
- Compressibility (Mach) effects are assumed to be negligible.
- Control effectiveness is assumed to vary nonlinearly with angle of attack and linearly with angle of deflection. Control effectiveness is not dependent on sideslip angle.
- The nonlinear six-degrees-of-freedom aerodynamic model is a representation of an early version of the HL-20. Therefore, the model is not intended for realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

- Equations of motion
- Environmental models
- Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which model the typical airframe components:

- "6DOF (Euler Angles) Subsystem" on page 3-20
- "Environmental Models Subsystem" on page 3-21
- "Alpha, Beta, Mach Subsystem" on page 3-23
- "Aerodynamic Coefficients Subsystem" on page 3-24
- "Forces and Moments Subsystem" on page 3-28

HL-20 Airframe Subsystem

6DOF (Euler Angles) Subsystem

The 6DOF (Euler Angles) subsystem contains the six-degrees-of-freedom equations of motion for the airframe. In the 6DOF (Euler Angles) subsystem, the body attitude is propagated in time using an Euler angle representation. This subsystem is one of the equations of motion blocks from the Aerospace Blockset library. A quaternion representation is also available. See the 6DOF (Euler Angles) and 6DOF (Quaternion) block reference pages for more information on these blocks.

Environmental Models Subsystem

The Environmental Models subsystem contains the following subsystems and blocks:

- The WGS84 Gravity Model block implements the mathematical representation of the geocentric equipotential ellipsoid of the World Geodetic System (WGS84).

See the WGS84 Gravity Model block reference page for more information on this block.

- The COESA Atmosphere Model block implements the mathematical representation of the 1976 Committee on Extension to the Standard Atmosphere (COESA) standard lower atmospheric values for absolute temperature, pressure, density, and speed of sound, given the input geopotential altitude.

See the COESA Atmosphere Model block reference page for more information on this block.

- The Wind Models subsystem contains the following blocks:
- The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on this block.

- The Discrete Wind Gust Model block implements a wind gust of the standard "1cosine" shape.

See the Discrete Wind Gust Model block reference page for more information on this block.

- The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page for more information on this block.

The environmental models implement mathematical representations within standard references, such as U.S. Standard Atmosphere, 1976.

Environmental Models in HL-20 Airframe Model

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem

The Alpha, Beta, Mach subsystem calculates additional parameters needed for the aerodynamic coefficient computation and lookup. These additional parameters include

- Mach number
- Incidence angles (α, β)
- Airspeed
- Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity and corrects the body rates for wind angular acceleration.

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta, Mach Subsystem)

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the six aerodynamic coefficients, which are implemented as in reference [1]. The six aerodynamic coefficients follow.

C_{x}	Axial-force coefficient
C_{y}	Side-force coefficient
C_{z}	Normal-force coefficient
C_{1}	Rolling-moment coefficient
C_{m}	Pitching-moment coefficient
C_{n}	Yawing-moment coefficient

Ground and landing gear effects are not included in this model.
The contribution of each of these coefficients is calculated in the subsystems (body rate, actuator increment, and datum), and then summed and passed to the Forces and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled models of a preliminary subsonic aerodynamic model of the HL-20. The data was curve fitted, and most of the aerodynamic coefficients are described by polynomial functions of angle of attack and sideslip angle. In-depth details about the aerodynamic data and the data reduction can be found in reference [1].

The polynomial functions contained in the aeroblk_init_hl20.m file are used to calculate lookup tables used by the model's preload function. Lookup tables substitute for polynomial functions. Depending on the order and implementation of the function, using lookup tables can be more efficient than recalculating values at each time step with functions. To further improve efficiency, most tables are implemented as PreLookup Index Search and Interpolation (n-D) using PreLook-up blocks. These blocks improve performance most when the model has a number of tables with identical breakpoints. These blocks reduce the number of times the model has to search for a breakpoint in a given time step. Once the tables are populated by the preload function, the aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided among three subsystems:

- "Datum Coefficients Subsystem" on page 3-26
- "Body Rate Damping Subsystem" on page 3-26
- "Actuator Increment Subsystem" on page 3-27

Summing the Datum Coefficients, Body Rate Damping, and Actuator Increments subsystem outputs generates the six aerodynamic coefficients used to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem

The Datum Coefficients subsystem calculates coefficients for the basic configuration without control surface deflection. These datum coefficients depend only on the incidence angles of the body.

Body Rate Damping Subsystem

Dynamic motion derivatives are computed in the Body Rate Damping subsystem.

Actuator Increment Subsystem

Lookup tables determine the incremental changes to the coefficients due to the control surface deflections in the Actuator Increment subsystem. Available control surfaces include symmetric wing flaps (elevator), differential wing flaps (ailerons), positive body flaps, negative body flaps, differential body flaps, and an all-movable rudder.

Forces and Moments Subsystem

The Forces and Moments subsystem calculates the body forces and body moments acting on the airframe about the center of gravity. These forces and moments depend on the aerodynamic coefficients, thrust, dynamic pressure, and reference airframe parameters.

Complete the Model

These subsystems that you have examined complete the HL-20 airframe. The next step in the flight control design process is to analyze, trim, and linearize the HL-20 airframe so that a flight control system can be designed for it. You can see an example of an autoland flight control for the HL-20 airframe in the aeroblk_HL20 example.

References

[1] Jackson, E. B., and C. L. Cruz, "Preliminary Subsonic Aerodynamic Model for Simulation Studies of the HL-20 Lifting Body," NASA TM4302 (August 1992).This document is included in the HL-20 Lifting Body .zip file available from MATLAB Central.
[2] Morring, F., Jr., "ISS `Lifeboat' Study Includes ELVs," Aviation Week \& Space Technology (May 20, 2002).

Additional Information About the HL-20 Lifting Body

http://www.astronautix.com/craft/hl20.htm

Blocks - Alphabetical List

ID Controller [A(v), $\mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})]$

Implement gain-scheduled state-space controller depending on one scheduling parameter

Library

GNC/Control

The 1D Controller [$\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})$] block implements a gain-scheduled state-space controller as defined by the equations

$$
\begin{aligned}
& \dot{x}=A(v) x+B(v) y \\
& u=C(v) x+D(v) y
\end{aligned}
$$

where v is a parameter over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

```
増 Function Block Parameters: 1D Controller [A(v),B(v),C(v),D(v)]
    StateSpaceABCD-1D (mask) (link)
    Implement a state-space controller [A,B,C,D] where A, B, C, and D
    depend on one scheduling parameter, v.
    Parameters
    A-matrix(v):
    A1
    B-matrix(v):
    B1
    C-matrix(v):
    C1
    D-matrix(v):
    D1
    Scheduling variable breakpoints:
    v_vec
    Initial state, x_initial:
    0
```


A-matrix(v)

A-matrix of the state-space implementation. In the case of 1-D scheduling, the A matrix should have three dimensions, the last one corresponding to the scheduling variable v. For example, if the A-matrix corresponding to the first entry of v is the identity matrix, then $A(:,:, 1)=\left[\begin{array}{lll}1 & 0 ; 0 & 1\end{array}\right]$.

B-matrix(v)

B-matrix of the state-space implementation. In the case of 1-D scheduling, the B matrix should have three dimensions, the last one corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first entry of v is the identity matrix, then $B(:,:, 1)=[10 ; 01] ;$.

C-matrix(v)

C-matrix of the state-space implementation. In the case of 1-D scheduling, the C matrix should have three dimensions, the last one corresponding to the scheduling variable v. For example, if the C-matrix corresponding to the first entry of v is the identity matrix, then $C(:,:, 1)=[10 ; 01] ;$.

D-matrix(v)

D-matrix of the state-space implementation. In the case of 1-D scheduling, the D matrix should have three dimensions, the last one corresponding to the scheduling variable v. For example, if the D-matrix corresponding to the first entry of v is the identity matrix, then $D(:,:, 1)=\left[\begin{array}{lll}1 & 0 ; 0 & 1\end{array}\right]$.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Inputs and Outputs

$\left.\begin{array}{lll}\text { Input } & \text { Dimension Type } & \text { Description } \\ \text { First } & \text { Any } & \begin{array}{l}\text { Contains the measurements. } \\ \text { Second }\end{array} \\ \text { Contains the scheduling variable conforming to } \\ \text { the dimensions of the state-space matrices. }\end{array}\right\}$

Assumptions and Limitations

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

Examples

See H-Infinity Controller (1 Dimensional Scheduling) in aeroblk_lib_HL20 for an example of this block.

See Also

1D Controller Blend $u=(1-\mathrm{L}) . \mathrm{K} 1 . \mathrm{y}+\mathrm{L} . \mathrm{K} 2 . \mathrm{y}$
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller [A(v), B(v), C(v), D(v)]
3D Controller [A(v), B(v), C(v), D(v)]

1D Controller Blend u=(1-L).K 1.y+L.K2.y

Implement 1-D vector of state-space controllers by linear interpolation of their outputs

Library

GNC/Control

Description

The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of state-space controller designs. The controllers are run in parallel, and their outputs interpolated according to the current flight condition or operating point. The advantage of this implementation approach is that the state-space matrices A, B, C, and D for the individual controller designs do not need to vary smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points $v=v_{\min }$ and $v=v_{\text {max }}$. The 1D Controller Blend block implements

$$
\begin{aligned}
& \dot{x}_{1}=A_{1} x_{1}+B_{1} y \\
& u_{1}=C_{1} x_{1}+D_{1} y \\
& \dot{x}_{2}=A_{2} x_{2}+B_{2} y \\
& u_{2}=C_{2} x_{2}+D_{2} y \\
& u=(1-\lambda) u_{1}+\lambda u_{2}
\end{aligned}
$$

$$
\lambda=\left\{\begin{array}{c}
0 \\
\frac{v-v_{\min }}{v_{\max }-v_{\min }} \\
1
\end{array}\right.
$$

$$
\begin{aligned}
v & <v_{\min } \\
v_{\min } & \leq v \leq v_{\max } \\
v & >v_{\max }
\end{aligned}
$$

For longer arrays of design points, the blocks only implement nearest neighbor designs. For the 1D Controller Blend block, at any given instant in time, three controller designs are being updated. This reduces computational requirements.

As the value of the scheduling parameter varies and the index of the controllers that need to be run changes, the states of the oncoming controller are initialized by using the self-conditioned form as defined for the Self-Conditioned [A,B,C,D] block.

Dialog Box

Function Block Parameters: 1D Controller Blend: $u=(1-L) . K 1 . y+L . K 2 . y ~ x$
Blend-1D (mask) (link)
Blend between outputs of a 1-D vector of state-space controllers. All controllers must have the same state dimension.

Parameters
A-matrix(v):
A1
B-matrix(v):
B1

C-matrix(v):
C1
D-matrix(v):
D1
Scheduling variable breakpoints:
[1 1.5 2]
Initial state, x_initial:

0
Poles of $A(v)-H(v)^{*} C(v)=[w 1 \ldots w n]:$
[-5 -2]

A-matrix(v)

A-matrix of the state-space implementation. In the case of 1-D blending, the A-matrix should have three dimensions, the last one corresponding to scheduling variable v. Hence, for example, if the A-matrix corresponding to the first entry of v is the identity matrix, then $A(:,:, 1)=[10 ; 01] ;$.

B-matrix(v)

B-matrix of the state-space implementation.

C-matrix(v)

C-matrix of the state-space implementation.

D-matrix(v)

D-matrix of the state-space implementation.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_{-}initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)

For oncoming controllers, an observer-like structure is used to ensure that the controller output tracks the current block output, u. The poles of the observer are defined in this dialog box as a vector, the number of poles being equal to the dimension of the A-matrix. Poles that are too fast result in sensor noise propagation, and poles that are too slow result in the failure of the controller output to track u.

Inputs and Outputs

Input	Dimension Type	Description
First	Any	Contains the measurements. Contains the scheduling variable, conforming to the dimensions of the state-space matrices.
Output	Dimension Type	Description
First	Any	Contains the actuator demands.

Assumptions and Limitations

Note: This block requires the Control System Toolbox ${ }^{\text {TM }}$ product.

Reference

Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, Advances in Industrial Control Series, 1995. ISBN 3-540-19960-8. See Chapter 5.

See Also

1D Controller [A(v), $\mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})$]
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller Blend

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled state-space controller in observer form depending on one scheduling parameter

Library

GNC/Control

The 1D Observer Form $[\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{F}(\mathrm{v}), \mathrm{H}(\mathrm{v})]$ block implements a gain-scheduled state-space controller defined in the following observer form:

$$
\begin{aligned}
& \dot{x}=(A(v)+H(v) C(v)) x+B(v) u_{\text {meas }}+H(v)\left(y-y_{\text {dem }}\right) \\
& u_{\text {dem }}=F(v) x
\end{aligned}
$$

The main application of this block is to implement a controller designed using H-infinity loop-shaping, one of the design methods supported by Robust Control Toolbox.

Dialog Box

```
4 Function Block Parameters: 1D Observer Form [A(v),B(v),C(v),F(v),H\ldots.. &
    StateSpaceABCFH-1D (mask) (link)
    Implement a state-space controller [A,B,C,F,H] in observer form
    where A, B, C, F, and H depend on one scheduling parameter.
    Parameters
    A-matrix(v):
    A
    B-matrix(v):
    B
    C-matrix(v):
    C
    F-matrix(v):
    F
    H-matrix(v):
    H
    Scheduling variable breakpoints:
    v_vec
    Initial state, x_initial:
    0
        OK}\mathrm{ Cancel Help Apply
```


A-matrix(v)

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the A-matrix corresponding to the first entry of v is the identity matrix, then $A(:,:, 1)=[10 ; 01] ;$.

B-matrix(v)

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for
example, if the B-matrix corresponding to the first entry of v is the identity matrix, then $B(:,:, 1)=[10 ; 01] ;$.

C-matrix(v)

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the C-matrix corresponding to the first entry of v is the identity matrix, then $C(:,:, 1)=[10 ; 01] ;$.

F-matrix(v)

State-feedback matrix. The F-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the F-matrix corresponding to the first entry of v is the identity matrix, then $F(:,:, 1)=[1$ 0;0 1];.

H-matrix(v)

Observer (output injection) matrix. The H-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the H matrix corresponding to the first entry of v is the identity matrix, then $\mathrm{H}(:,:, 1)=$ [1 0;0 1];.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, \mathbf{x} _initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Inputs and Outputs

Input	Dimension Type	Description
First	Contains the set-point error.	
Second		Contains the scheduling variable.
Third		Contains the measured actuator position.
Output	Dimension Type	Description
First		Contains the actuator demands.

Assumptions and Limitations

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

Examples

See H-Infinity Controller (1 Dimensional Scheduling) in aeroblk_lib_HL20 for an example of this block.

Reference

Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, Advances in Industrial Control Series, 1995. ISBN 3-540-19960-8. See Chapter 6.

See Also

1D Controller [$\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})$]
1D Controller Blend $u=(1-L) . K 1 . y+L . K 2 . y$
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v), B(v),C(v),F(v),H(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned $[A(v), B(v), C(v), D(v)]$

Implement gain-scheduled state-space controller in self-conditioned form depending on one scheduling parameter

Library

GNC/Control

Description隺沗meas

The 1D Self-Conditioned $[A(v), B(v), C(v), D(v)]$ block implements a gain-scheduled statespace controller as defined by the equations

$$
\begin{aligned}
& \dot{x}=A(v) x+B(v) y \\
& u=C(v) x+D(v) y
\end{aligned}
$$

in the self-conditioned form

$$
\begin{aligned}
& \dot{z}=(A(v)-H(v) C(v)) z+(B(v)-H(v) D(V)) e+H(v) u_{\text {meas }} \\
& u_{\text {dem }}=C(v) z+D(v) e
\end{aligned}
$$

For the rationale behind this self-conditioned implementation, refer to the SelfConditioned [A,B,C,D] block reference. This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the parameter over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

```
直 Function Block Parameters: 1D Self-Conditioned [A(v),B(v),C(v),D(v)]\(x\)
StateSpaceSelfCond-1D (mask) (link)
Implement a state-space controller [A(v),B(v),C(v),D(v)] in a self-
conditioned form. If u_meas = u_dem, then the implemented
controller is [A,B,C,D]. If u_meas is limited, e.g., rate limiting, then
the poles of the controller become those defined in the mask dialog
box. Uses call to Control Systems Toolbox function place.m when
initializing. A, B, C, and D should be 3-D matrices, the last dimension
corresponding to the scheduling parameter, and the first two
corresponding to the matrix for a given set of scheduling parameter
values.
Parameters
A-matrix(v):
A
B-matrix(v):
B
C-matrix(v):
C
D-matrix(v):
D
Scheduling variable breakpoints:
v_vec
Initial state, x_initial:
0
Poles of A(v)-H(v)*C(v)=[w1 ... wn]:
[-5 -2]

\section*{A-matrix(v)}
\(A\)-matrix of the state-space implementation. The \(A\)-matrix should have three dimensions, the last one corresponding to the scheduling variable \(v\). Hence, for
example, if the \(A\)-matrix corresponding to the first entry of \(v\) is the identity matrix, then \(A(:,:, 1)=[10 ; 01] ;\).

\section*{B-matrix(v)}
\(B\)-matrix of the state-space implementation. The \(B\)-matrix should have three dimensions, the last one corresponding to the scheduling variable \(v\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v\) is the identity matrix, then \(B(:,:, 1)=[10 ; 01] ;\).

\section*{C-matrix(v)}
\(C\)-matrix of the state-space implementation. The \(C\)-matrix should have three dimensions, the last one corresponding to the scheduling variable \(v\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v\) is the identity matrix, then \(C(:,:, 1)=[10 ; 01] ;\).

\section*{D-matrix(v)}
\(D\)-matrix of the state-space implementation. The \(D\)-matrix should have three dimensions, the last one corresponding to the scheduling variable \(v\). Hence, for example, if the \(D\)-matrix corresponding to the first entry of \(v\) is the identity matrix, then \(D(:,:, 1)=[10 ; 01] ;\).

\section*{Scheduling variable breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v\) should be same as the size of the third dimension of \(A, B, C\), and \(D\).

\section*{Initial state, \(\mathbf{x}\) _initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Poles of A(v)-H(v)*C(v)}

Vector of the desired poles of \(A-H C\). Note that the poles are assigned to the same locations for all values of the scheduling parameter \(v\). Hence the number of pole locations defined should be equal to the length of the first dimension of the \(A\)-matrix.

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Any & Contains the measurements. \\
Second & & \begin{tabular}{l} 
Contains the scheduling variable, conforming to \\
\\
\end{tabular} \\
& & the dimensions of the state-space matrices.
\end{tabular}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
Third & & Contains the measured actuator position. \\
Output & Dimension Type & Description \\
First & Any & Contains the actuator demands.
\end{tabular}

\section*{Assumptions and Limitations}

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

Note: This block requires the Control System Toolbox product.

\section*{Reference}

The algorithm used to determine the matrix H is defined in Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback," International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

\section*{See Also}

1D Controller [A(v), B(v), C(v), D(v)]
1D Controller Blend \(u=(1-L) . K 1 . y+L . K 2 . y\)
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

\section*{2D Controller [A(v), B(v),C(v), D(v)]}

Implement gain-scheduled state-space controller depending on two scheduling parameters

\section*{Library}

GNC/Control


The 2D Controller \([\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})\) ] block implements a gain-scheduled state-space controller as defined by the equations
\[
\begin{aligned}
& \dot{x}=A(v) x+B(v) y \\
& u=C(v) x+D(v) y
\end{aligned}
\]
where \(v\) is a vector of parameters over which \(A, B, C\), and \(D\) are defined. This type of controller scheduling assumes that the matrices \(A, B, C\), and \(D\) vary smoothly as a function of \(v\), which is often the case in aerospace applications.

\section*{Dialog Box}
```

情 Function Block Parameters: 2D Controller [A(v),B(v),C(v),D(v)] - <
StateSpaceABCD-2D (mask) (link)
Implement a state-space controller [A,B,C,D] where A, B, C, and D
depend on two scheduling parameters, v1 and v2.
Parameters
A-matrix(v1,v2):
A
B-matrix(v1,v2):
B
C-matrix(v1,v2):
C
D-matrix(v1,v2):
D
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Initial state, x_initial:
0

```

\section*{A-matrix(v1,v2)}
\(A\)-matrix of the state-space implementation. In the case of 2 -D scheduling, the \(A\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(A(:,:, 1,1)=[10 ; 0\) 1];

B-matrix(v1,v2)
\(B\)-matrix of the state-space implementation. In the case of 2 -D scheduling, the \(B\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(\mathrm{B}(:,:, 1,1)=[10 ; 0\) 1];.

\section*{C-matrix(v1,v2)}
\(C\)-matrix of the state-space implementation. In the case of 2-D scheduling, the \(C\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(C(:,:, 1,1)=[10 ; 0\) 1];.
D-matrix(v1,v2)
\(D\)-matrix of the state-space implementation. In the case of 2-D scheduling, the \(D\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(D\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(D(:,:, 1,1)=[10 ; 0\) 1];.

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C\), and \(D\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C\), and \(D\).

\section*{Initial state, \(\mathbf{x}\) _initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Any & \begin{tabular}{l} 
Contains the measurements. \\
Second
\end{tabular} \\
Third & \begin{tabular}{l} 
Contains the scheduling variable, conforming to \\
the dimensions of the state-space matrices.
\end{tabular} \\
& \begin{tabular}{l} 
Contains the scheduling variable, conforming to \\
the dimensions of the state-space matrices.
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
First & Any & Contains the actuator demands.
\end{tabular}

\section*{Assumptions and Limitations}

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

\section*{Examples}

See H-Infinity Controller (Two Dimensional Scheduling) in aeroblk_lib_HL20 for an example of this block.

\section*{See Also}

1D Controller [ \(\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})\) ]
2D Controller Blend
2D Observer Form [A(v), B(v), C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Controller [A(v), B(v), C(v), D(v)]

\section*{2D Controller Blend}

Implement 2-D vector of state-space controllers by linear interpolation of their outputs

\section*{Library}

GNC/Control


The 2D Controller Blend block implements an array of state-space controller designs. The controllers are run in parallel, and their outputs interpolated according to the current flight condition or operating point. The advantage of this implementation approach is that the state-space matrices \(A, B, C\), and \(D\) for the individual controller designs do not need to vary smoothly from one design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller designs are updated.

As the value of the scheduling parameter varies and the index of the controllers that need to be run changes, the states of the oncoming controller are initialized by using the self-conditioned form as defined for the Self-Conditioned [A,B,C,D] block.

\section*{Dialog Box}

Function Block Parameters: 2D Controller Blend
Blend-2D (mask) (link)
Blend between outputs of a 2-D vector of state-space controllers. All controllers must have the same state dimension.

Parameters
A-matrix(v1,v2):
A
B-matrix(v1,v2):
B
C-matrix(v1,v2):
C
D-matrix(v1,v2):
D
First scheduling variable ( v 1 ) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Initial state, x_initial:
0
Poles of \(A(v)-H(v) * C(v)=[w 1 \ldots w n]\) :
[-5 -2]

\section*{A-matrix(v1,v2)}
\(A\)-matrix of the state-space implementation. In the case of 2 -D blending, the \(A\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(A(:,:, 1,1)=\left[\begin{array}{ll}1 & 0 ; 01] ;\end{array}\right.\)
B-matrix(v1,v2)
\(B\)-matrix of the state-space implementation.

\section*{C-matrix(v1,v2)}
\(C\)-matrix of the state-space implementation.
D-matrix(v1,v2)
\(D\)-matrix of the state-space implementation.

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C\), and \(D\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C\), and \(D\).

\section*{Initial state, \(x_{-}\)initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Poles of A(v)-H(v)*C(v)}

For oncoming controllers, an observer-like structure is used to ensure that the controller output tracks the current block output, \(u\). The poles of the observer are defined in this dialog box as a vector, the number of poles being equal to the dimension of the \(A\)-matrix. Poles that are too fast result in sensor noise propagation, and poles that are too slow result in the failure of the controller output to track \(u\).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Any & \begin{tabular}{l} 
Contains the measurements. \\
Second
\end{tabular} \\
Third & & \begin{tabular}{l} 
Contains the scheduling variable, conforming to \\
the dimensions of the state-space matrices. \\
Contains the scheduling variable, conforming to \\
the dimensions of the state-space matrices.
\end{tabular} \\
Output & Dimension Type & Description \\
First & Any & Contains the actuator demands.
\end{tabular}

\section*{Assumptions and Limitations}

Note: This block requires the Control System Toolbox product.

\section*{Reference}

Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, Advances in Industrial Control Series, 1995. ISBN 3-540-19960-8. See Chapter 5.

\section*{See Also}

1D Controller Blend \(u=(1-L) . K 1 . y+L . K 2 . y\)
2D Controller [A(v), B(v), C(v), D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]

\section*{2D Observer Form [A(v), B(v),C(v),F(v),H(v)]}

Implement gain-scheduled state-space controller in observer form depending on two scheduling parameters

\section*{Library}

GNC/Control


The 2D Observer Form \([\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{F}(\mathrm{v}), \mathrm{H}(\mathrm{v})]\) block implements a gain-scheduled state-space controller defined in the following observer form:
\[
\begin{aligned}
& \dot{x}=(A(v)+H(v) C(v)) x+B(v) u_{\text {meas }}+H(v)\left(y-y_{d e m}\right) \\
& u_{\text {dem }}=F(v) x
\end{aligned}
\]

The main application of these blocks is to implement a controller designed using H infinity loop-shaping, one of the design methods supported by Robust Control Toolbox.

\section*{Dialog Box}

Function Block Parameters: 2D Observer Form [A(v),B(v),C(v),F(v),H...
    StateSpaceABCFH-2D (mask) (link)
    Implement a state-space controller [ \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{H}]\) in observer form
    where \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}\), and H depend on two scheduling parameters.
    Parameters
    A-matrix(v1,v2):
    A
    B-matrix(v1,v2):
    B
    C-matrix(v1,v2):
    C
    F-matrix(v1,v2):
    F
    H-matrix(v1,v2):
    H
    First scheduling variable (v1) breakpoints:
    v1_vec
    Second scheduling variable (v2) breakpoints:
    v2_vec
    Initial state, x _initial:
    0

\section*{A-matrix(v1,v2)}
\(A\)-matrix of the state-space implementation. In the case of 2 -D scheduling, the \(A\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(A(:,:, 1,1)=[10 ; 0\) 1];

\section*{B-matrix(v1,v2)}
\(B\)-matrix of the state-space implementation. In the case of 2-D scheduling, the \(B\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(B(:,:, 1,1)=[10 ; 0\) 1];.

\section*{C-matrix(v1,v2)}
\(C\)-matrix of the state-space implementation. In the case of 2-D scheduling, the \(C\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(C(:,:, 1,1)=[10 ; 0\) 1];.

\section*{F-matrix(v1,v2)}

State-feedback matrix. In the case of 2 -D scheduling, the \(F\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(F\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(F(:,:, 1,1)=[10 ; 01] ;\).

\section*{H-matrix(v1,v2)}

Observer (output injection) matrix. In the case of 2-D scheduling, the \(H\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(H\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(H(:,:, 1,1)=[10 ; 01] ;\).

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C, F\), and \(H\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C, F\), and \(H\).

\section*{Initial state, \(\mathbf{x}\) _initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Inputs and Outputs}
\begin{tabular}{ll} 
Input & Dimension Type \\
First & Description \\
Second & \begin{tabular}{l} 
Contains the set-point error. \\
Contains the scheduling variable, conforming to \\
the dimensions of the state-space matrices.
\end{tabular} \\
Third & \begin{tabular}{l} 
Contains the scheduling variable, conforming to \\
the dimensions of the state-space matrices.
\end{tabular} \\
Fourth & Contains the measured actuator position.
\end{tabular}
\begin{tabular}{lll}
\hline Output & Dimension Type & Description \\
\hline First & Contains the actuator demands.
\end{tabular}

\section*{Assumptions and Limitations}

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

\section*{Examples}

See H-Infinity Controller (Two Dimensional Scheduling) in aeroblk_lib_HL20 for an example of this block.

\section*{Reference}

Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, Advances in Industrial Control Series, 1995. ISBN 3-540-19960-8. See Chapter 6.

\section*{See Also}

1D Controller [ \(\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})\) ]

\author{
2D Controller [A(v), B(v), C(v), D(v)] \\ 2D Controller Blend \\ 2D Self-Conditioned [A(v),B(v),C(v),D(v)] \\ 3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
}

\section*{2D Self-Conditioned [A(v),B(v),C(v),D(v)]}

Implement gain-scheduled state-space controller in self-conditioned form depending on two scheduling parameters

\section*{Library}

GNC/Control


The 2D Self-Conditioned \([\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})]\) block implements a gain-scheduled statespace controller as defined by the equations
\[
\begin{aligned}
& \dot{x}=A(v) x+B(v) y \\
& u=C(v) x+D(v) y
\end{aligned}
\]
in the self-conditioned form
\[
\begin{aligned}
& \dot{z}=(A(v)-H(v) C(v)) z+(B(v)-H(v) D(v)) e+H(v) u_{\text {meas }} \\
& u_{\text {dem }}=C(v) z+D(v) e
\end{aligned}
\]

For the rationale behind this self-conditioned implementation, refer to the SelfConditioned [A,B,C,D] block reference. This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, \(v\) being the vector of parameters over which \(A\), \(B, C\), and \(D\) are defined. This type of controller scheduling assumes that the matrices \(A, B, C\), and \(D\) vary smoothly as a function of \(v\), which is often the case in aerospace applications.

\section*{Dialog Box}
```

圱 Function Block Parameters: 2D Self-Conditioned [A(v),B(v),C(v),D(v)]
StateSpaceSelfCond-2D (mask) (link)
Implement a state-space controller
[A(v1,v2),B(v1,v2),C(v1,v2),D(v1,v2)] in a self-conditioned form. If
u_meas = u_dem, then the implemented controller is [A,B,C,D]. If
u_meas is limited, e.g., rate limiting, then the poles of the controller
become those defined in the mask dialog box. Uses call to Control
Systems Toolbox function place.m when initializing. A, B, C, and D
should be 4-D matrices, the last two dimensions corresponding to the
scheduling parameters, and the first two corresponding to the matrix
for a given set of scheduling parameter values.
Parameters
A-matrix(v1,v2):
A
B-matrix(v1,v2):
B
C-matrix(v1,v2):
C
D-matrix(v1,v2):
D
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Initial state, x _initial:
0
Poles of $A(v)-H(v)^{*} C(v)=[w 1 \ldots w n]:$
[-5 -2]

```


\section*{A-matrix(v1,v2)}
\(A\)-matrix of the state-space implementation. In the case of 2 -D scheduling, the \(A\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(A(:,:, 1,1)=[10 ; 0\) 1];

\section*{B-matrix(v1,v2)}
\(B\)-matrix of the state-space implementation. In the case of 2 -D scheduling, the \(B\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(B(:,:, 1,1)=[10 ; 0\) 1];.

\section*{C-matrix(v1,v2)}
\(C\)-matrix of the state-space implementation. In the case of 2-D scheduling, the \(C\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(C(:,:, 1,1)=[10 ; 0\) 1];.

\section*{D-matrix(v1,v2)}
\(D\)-matrix of the state-space implementation. In the case of 2-D scheduling, the \(D\)-matrix should have four dimensions, the last two corresponding to scheduling variables \(v 1\) and \(v 2\). Hence, for example, if the \(D\)-matrix corresponding to the first entry of \(v 1\) and first entry of \(v 2\) is the identity matrix, then \(D(:,:, 1,1)=[10 ; 0\) 1];.

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C\), and \(D\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C\), and \(D\).

\section*{Initial state, \(x\) _initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Poles of A(v)-H(v)*C(v)}

Vector of the desired poles of \(A-H C\). Note that the poles are assigned to the same locations for all values of the scheduling parameter, \(v\). Hence, the number of pole locations defined should be equal to the length of the first dimension of the \(A\)-matrix.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the measurements. \\
\hline Second & & Contains the scheduling variable, conforming to the dimensions of the state-space matrices. \\
\hline Third & & Contains the scheduling variable, conforming to the dimensions of the state-space matrices. \\
\hline Fourth & & Contains the measured actuator position. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the actuator demands. \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

Note: This block requires the Control System Toolbox product.

\section*{Reference}

The algorithm used to determine the matrix H is defined in Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback," International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

\section*{See Also}

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller [A(v), B(v), C(v), D(v)]
2D Controller Blend

2D Observer Form [A(v), B(v), C(v),F(v),H(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

\section*{3D Controller [A(v), B(v), C(v), D(v)]}

Implement gain-scheduled state-space controller depending on three scheduling parameters

\section*{Library}

GNC/Control


The 3D Controller \([\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})]\) block implements a gain-scheduled state-space controller as defined by the equations
\[
\begin{aligned}
& \dot{x}=A(v) x+B(v) y \\
& u=C(v) x+D(v) y
\end{aligned}
\]
where \(v\) is a vector of parameters over which \(A, B, C\), and \(D\) are defined. This type of controller scheduling assumes that the matrices \(A, B, C\), and \(D\) vary smoothly as a function of \(v\), which is often the case in aerospace applications.

\section*{Dialog Box}
```

绩 Function Block Parameters: 2D Controller [A(v),B(v),C(v),D(v)] 列
StateSpaceABCD-2D (mask) (link)
Implement a state-space controller [A,B,C,D] where A, B, C, and D
depend on two scheduling parameters, v1 and v2.
Parameters
A-matrix(v1,v2):
A
B-matrix(v1,v2):
B
C-matrix(v1,v2):
C
D-matrix(v1,v2):
D
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Initial state, x_initial:
0

```

\section*{A-matrix(v1,v2,v3)}
\(A\)-matrix of the state-space implementation. In the case of 3-D scheduling, the \(A\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(A(:,:, 1,1,1)=[10 ; 01] ;\).
B-matrix(v1,v2,v3)
\(B\)-matrix of the state-space implementation. In the case of 3-D scheduling, the \(B\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(B(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{C-matrix(v1,v2,v3)}
\(C\)-matrix of the state-space implementation. In the case of \(3-\mathrm{D}\) scheduling, the \(C\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(C(:,:, 1,1,1)=[10 ; 01] ;\).
D-matrix(v1,v2,v3)
\(D\)-matrix of the state-space implementation. In the case of 3-D scheduling, the \(D\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(D\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(D(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C\), and \(D\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C\), and \(D\).

\section*{Third scheduling variable (v3) breakpoints}

Vector of the breakpoints for the third scheduling variable. The length of \(v 3\) should be same as the size of the fifth dimension of \(A, B, C\), and \(D\).

\section*{Initial state, \(x_{-}\)initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
\hline First & Contains the measurements. \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Input & Dimension Type & \begin{tabular}{l} 
Description \\
Second
\end{tabular} \\
Third & \begin{tabular}{l} 
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices.
\end{tabular} \\
Fourth & \begin{tabular}{l} 
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices.
\end{tabular} \\
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices.
\end{tabular}\(|\)\begin{tabular}{ll} 
Output & Dimension Type \\
First & Description
\end{tabular}

\section*{Assumptions and Limitations}

If the scheduling parameter input to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

\section*{See Also}

1D Controller [A(v), B(v), C(v), \(\mathrm{D}(\mathrm{v})\) ]
2D Controller [A(v), B(v), C(v), D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

\section*{3D Observer Form [A(v), \(\mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{F}(\mathrm{v}), \mathrm{H}(\mathrm{v})]\)}

Implement gain-scheduled state-space controller in observer form depending on three scheduling parameters

\section*{Library}

GNC/Control


The 3D Observer Form \([\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{F}(\mathrm{v}), \mathrm{H}(\mathrm{v})]\) block implements a gain-scheduled state-space controller defined in the following observer form:
\[
\begin{aligned}
& \dot{x}=(A(v)+H(v) C(v)) x+B(v) u_{\text {meas }}+H(v)\left(y-y_{\text {dem }}\right) \\
& u_{d e m}=F(v) x
\end{aligned}
\]

The main application of this block is to implement a controller designed using H -infinity loop-shaping, one of the design methods supported by Robust Control Toolbox.

\section*{Dialog Box}
```

1. Function Block Parameters: 3D Observer Form [A(v),B(v),C(v),F(v),H···.. x
StateSpaceABCFH-3D (mask) (link)
Implement a state-space controller [A,B,C,F,H] in observer form
where A, B, C, F, and H depend on three scheduling parameters.
Parameters
A-matrix(v1,v2,v3):
A
B-matrix(v1,v2,v3):
B
C-matrix(v1,v2,v3):
C
F-matrix(v1,v2,v3):
F
H-matrix(v1,v2,v3):
H
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Third scheduling variable (v3) breakpoints:
v3_vec
Initial state, x_initial:
0
```

\section*{A-matrix(v1,v2,v3)}
\(A\)-matrix of the state-space implementation. In the case of 3 -D scheduling, the \(A\) matrix should have five dimensions, the last three corresponding to scheduling
variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(A(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{B-matrix(v1,v2,v3)}
\(B\)-matrix of the state-space implementation. In the case of 3-D scheduling, the \(B\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(B(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{C-matrix(v1,v2,v3)}
\(C\)-matrix of the state-space implementation. In the case of 3 -D scheduling, the \(C\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(C(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{F-matrix(v1,v2,v3)}

State-feedback matrix. In the case of 3 -D scheduling, the \(F\)-matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(F\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(\mathrm{F}(:,:, 1,1,1)=\) [1 0;0 1];.

\section*{H-matrix(v1,v2,v3)}

Observer (output injection) matrix. In the case of 3-D scheduling, the \(H\)-matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(H\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(H(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C, F\), and \(H\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C, F\), and \(H\).

\section*{Third scheduling variable (v3) breakpoints}

Vector of the breakpoints for the third scheduling variable. The length of \(v 3\) should be same as the size of the fifth dimension of \(A, B, C, F\), and \(H\).

\section*{Initial state, \(x_{-}\)initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & \multicolumn{1}{l}{ Description } \\
First & \begin{tabular}{l} 
Contains the set-point error. \\
Second
\end{tabular} & \begin{tabular}{l} 
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices. \\
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices. \\
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices. \\
Contains the measured actuator position.
\end{tabular} \\
Third & Difth & Description \\
Fifth & Contains the actuator demands. \\
\hline First & Dimension Type &
\end{tabular}

\section*{Assumptions and Limitations}

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

\section*{Reference}

Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, Advances in Industrial Control Series, 1995. ISBN 3-540-19960-8. See Chapter 6.

\section*{See Also}

\author{
1D Controller [A(v), B(v), C(v), D(v)] \\ 2D Observer Form [A(v), B(v),C(v),F(v), H(v)] \\ 3D Controller [A(v), B(v), C(v), D(v)] \\ 3D Self-Conditioned [A(v),B(v),C(v),D(v)]
}

\section*{3D Self-Conditioned [A(v), B(v),C(v),D(v)]}

Implement gain-scheduled state-space controller in self-conditioned form depending on two scheduling parameters

\section*{Library}

GNC/Control


The 3D Self-Conditioned \([\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})]\) block implements a gain-scheduled statespace controller as defined by the equations
\[
\begin{aligned}
& \dot{x}=A(v) x+B(v) y \\
& u=C(v) x+D(v) y
\end{aligned}
\]
in the self-conditioned form
\[
\begin{aligned}
& \dot{z}=(A(v)-H(v) C(v)) z+(B(v)-H(v) D(v)) e+H(v) u_{\text {meas }} \\
& u_{d e m}=C(v) z+D(v) e
\end{aligned}
\]

For the rationale behind this self-conditioned implementation, refer to the SelfConditioned [A,B,C,D] block reference. These blocks implement a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, \(v\) being the vector of parameters over which \(A\), \(B, C\), and \(D\) are defined. This type of controller scheduling assumes that the matrices \(A, B, C\), and \(D\) vary smoothly as a function of \(v\), which is often the case in aerospace applications.

\section*{Dialog Box}
```

/ Function Block Parameters: 3D Self-Conditioned [A(v),B(v),C(v),D(v)] x
StateSpaceSelfCond-3D (mask) (link)
Implement a state-space controller
[A(v1,v2,v3),B(v1,v2,v3),C(v1,v2,v3),D(v1,v2,v3)] in a self-conditioned
form. If u_meas = u_dem, then the implemented controller is
[A,B,C,D]. If u_meas is limited, e.g., rate limiting, then the poles of
the controller become those defined in the mask dialog box. Uses call
to Control Systems Toolbox function place.m when initializing. A, B, C,
and D should be 5-D matrices, the last three dimensions
corresponding to the scheduling parameters, and the first two
corresponding to the matrix for a given set of scheduling parameter
values.
Parameters
A-matrix(v1,v2,v3):
A
B-matrix(v1,v2,v3):
B
C-matrix(v1,v2,v3):
C
D-matrix(v1,v2,v3):
D
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Third scheduling variable (v3) breakpoints:
v3_vec
Initial state, x_initial:
0
Poles of A(v)-H(v)*C(v) = [w1 ... wn]:
[-5 -2]

```

A-matrix(v1,v2,v3)
\(A\)-matrix of the state-space implementation. In the case of 3 -D scheduling, the \(A\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(A\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(A(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{B-matrix(v1,v2,v3)}
\(B\)-matrix of the state-space implementation. In the case of 3 -D scheduling, the \(B\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(B\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(B(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{C-matrix(v1,v2,v3)}
\(C\)-matrix of the state-space implementation. In the case of 3 -D scheduling, the \(C\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(C\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(C(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{D-matrix(v1,v2,v3)}
\(D\)-matrix of the state-space implementation. In the case of 3-D scheduling, the \(D\) matrix should have five dimensions, the last three corresponding to scheduling variables \(v 1, v 2\), and \(v 3\). Hence, for example, if the \(D\)-matrix corresponding to the first entry of \(v 1\), the first entry of \(v 2\), and the first entry of \(v 3\) is the identity matrix, then \(D(:,:, 1,1,1)=[10 ; 01] ;\).

\section*{First scheduling variable (v1) breakpoints}

Vector of the breakpoints for the first scheduling variable. The length of \(v 1\) should be same as the size of the third dimension of \(A, B, C\), and \(D\).

\section*{Second scheduling variable (v2) breakpoints}

Vector of the breakpoints for the second scheduling variable. The length of \(v 2\) should be same as the size of the fourth dimension of \(A, B, C\), and \(D\).

\section*{Third scheduling variable (v3) breakpoints}

Vector of the breakpoints for the third scheduling variable. The length of \(v 3\) should be same as the size of the fifth dimension of \(A, B, C\), and \(D\).

\section*{Initial state, x_initial}

Vector of initial states for the controller, i.e., initial values for the state vector, \(x\). It should have length equal to the size of the first dimension of \(A\).

\section*{Poles of A(v)-H(v)*C(v)}

Vector of the desired poles of \(A-H C\). Note that the poles are assigned to the same locations for all values of the scheduling parameter \(v\). Hence the number of pole locations defined should be equal to the length of the first dimension of the \(A\)-matrix.

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & \begin{tabular}{l} 
Contains the measurements. \\
Second
\end{tabular} & \begin{tabular}{l} 
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices.
\end{tabular} \\
Third & \begin{tabular}{l} 
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices.
\end{tabular} \\
Fourth & \begin{tabular}{l} 
Contains the scheduling variable, ordered \\
conforming to the dimensions of the state-space \\
matrices.
\end{tabular} \\
Fifth & \begin{tabular}{l} 
Contains the measured actuator position.
\end{tabular} \\
Output & Dimension Type & Description \\
First & Contains the measured actuator position.
\end{tabular}

The first input is the measurements.
The second, third, and fourth inputs are the scheduling variables ordered conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.
The output is the actuator demands.

\section*{Assumptions and Limitations}

If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.

Note: This block requires the Control System Toolbox product.

\section*{Reference}

The algorithm used to determine the matrix H is defined in Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback," International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

\section*{See Also}

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Controller [A(v), B(v), C(v), D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

\section*{3DoF Animation}

Create 3-D MATLAB Graphics animation of three-degrees-of-freedom object

\section*{Library}

Animation


The 3DoF Animation block displays a 3-D animated view of a three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using MATLAB Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to create and display the animation.

This block does not produce deployable code, but can be used with Simulink Coder external mode as a SimViewingDevice.

\section*{Dialog Box}
```

名 Sink Block Parameters: 3DoF Animation
x
3DoF_Animation (mask) (link)
Create a 3-D animated view of a three-degrees-of-freedom craft and
its target, where }X\mathrm{ and }Z\mathrm{ target position (TargetPos), }\textrm{X}\mathrm{ and }Z\mathrm{ craft
position (Xe,Ze), and craft attitude are inputs.
Display parameters are in the same units of length as the input
parameters.
Parameters
Axes limits [xmin xmax ymin ymax zmin zmax]:
[0 5000-2000 2000-5050-3050]
Time interval between updates:
0.05
Size of craft displayed:
1.0
Enter view: Fixed position
Position of camera [xc yc zc]:
[2000 500 -3150]
View angle:
10
v Enable animation

```

\section*{Axes limits [xmin xmax ymin ymax zmin zmax]}

Specifies the three-dimensional space to be viewed.

\section*{Time interval between updates}

Specifies the time interval at which the animation is redrawn.

\section*{Size of craft displayed}

Scale factor to adjust the size of the craft and target.

\section*{Enter view}

Selects preset MATLAB Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of camera and View angle are used to customize the position and field of view for the selected view. Possible views are
- Fixed position
- Cockpit
- Fly alongside

\section*{Position of camera [xc yc zc]}

Specifies the MATLAB Graphics parameter CameraPosition on Axes Properties for the figure axes. Used in all cases except for the Cockpit view.

\section*{View angle}

Specifies the MATLAB Graphics parameter CameraViewAngle on Axes Properties for the figure axes in degrees.

\section*{Enable animation}

When selected, the animation is displayed during the simulation. If not selected, the animation is not displayed.

\section*{Inputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Vector & \begin{tabular}{l} 
Contains the altitude and the downrange position of the \\
target in Earth coordinates.
\end{tabular} \\
Second & Vector & \begin{tabular}{l} 
Contains the altitude and the downrange position of the \\
craft in Earth coordinates. \\
Contains the attitude of the craft.
\end{tabular} \\
Third & &
\end{tabular}

\section*{Examples}

See aero_guidance for an example of this block.

\section*{See Also}

\author{
6DoF Animation
}

FlightGear Preconfigured 6DoF Animation
The figure axes properties CameraPosition and CameraViewAngle on Axes Properties

\section*{3DOF (Body Axes)}

Implement three-degrees-of-freedom equations of motion with respect to body axes

\section*{Library}

Equations of Motion/3DOF


The 3DOF (Body Axes) block considers the rotation in the vertical plane of a body-fixed coordinate frame about a flat Earth reference frame.


The equations of motion are
\[
\begin{aligned}
& \dot{u}=\frac{F_{x}}{m}-q w-g \sin \theta \\
& \dot{w}=\frac{F_{z}}{m}+q u+g \cos \theta \\
& \dot{q}=\frac{M}{I_{y y}} \\
& \dot{\theta}=q
\end{aligned}
\]
where the applied forces are assumed to act at the center of gravity of the body.

\section*{Dialog Box}
\begin{tabular}{l}
\hline Function Block Parameters: 3DOF (Body Axes) \\
3DOF EoM (mask) (link) \\
Integrate the three-degrees-of-freedom equations of motion to \\
determine body position, velocity, attitude, and related values. \\
Parameters \\
Units: Metric (MKS) \\
Mass type: Fixed \\
Initial velocity: \\
\hline 100 \\
Initial body attitude: \\
\hline 0 \\
Initial incidence: \\
\hline 0 \\
Initial body rotation rate: \\
\hline 0 \\
Initial position (x z): \\
\hline\([00]\) \\
Initial mass: \\
\hline 1.0 \\
Inertia: \\
\hline 1.0 \\
Gravity source: External \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Units } & \text { Forces } & \text { Moment } & \text { Acceleration } & \text { Velocity Position } & \text { Mass } & \text { Inertia } \\ \hline \begin{array}{l}\text { Metric } \\ \text { (MKS) }\end{array} & \text { Newton } & \begin{array}{l}\text { Newton- } \\ \text { meter }\end{array} & \begin{array}{l}\text { Meters } \\ \text { per second } \\ \text { squared }\end{array} & \begin{array}{l}\text { Meters per } \\ \text { second }\end{array} & \text { Meters } & \text { Kilogram }\end{array} \begin{array}{l}\text { Kilogram } \\ \text { meter } \\ \text { squared }\end{array}\right]\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & \begin{tabular}{l} 
Foot- \\
pound
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second \\
squared
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second
\end{tabular} & Feet & Slug \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in kts)
\end{tabular} & Pound & \begin{tabular}{l} 
Foot- \\
pound
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second \\
squared
\end{tabular} & Knots & Feet & Slug foot \\
squared
\end{tabular}\(\left|\begin{array}{l}\text { Slug foot } \\
\text { squared }\end{array}\right|\)

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l} 
Mass and inertia vary linearly as a function of mass \\
rate.
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Initial velocity}

A scalar value for the initial velocity of the body, \(\left(V_{0}\right)\).

\section*{Initial body attitude}

A scalar value for the initial pitch attitude of the body, \(\left(\theta_{0}\right)\).

\section*{Initial incidence}

A scalar value for the initial angle between the velocity vector and the body, \(\left(\alpha_{0}\right)\).

\section*{Initial body rotation rate}

A scalar value for the initial body rotation rate, \(\left(q_{0}\right)\).

\section*{Initial position ( \(\mathbf{x}, \mathrm{z}\) )}

A two-element vector containing the initial location of the body in the flat Earth reference frame.

\section*{Initial Mass}

A scalar value for the mass of the body.

\section*{Inertia}

A scalar value for the inertia of the body.

\section*{Gravity Source}

Specify source of gravity:
\begin{tabular}{|l|l|}
\hline External & Variable gravity input to block \\
\hline Internal & Constant gravity specified in mask \\
\hline
\end{tabular}

\section*{Acceleration due to gravity}

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0 .

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the force acting along the body \(x\) axis, \(\left(F_{x}\right)\). \\
\hline Second & & Contains the force acting along the body \(z\) axis, \(\left(F_{z}\right)\). \\
\hline Third & & Contains the applied pitch moment, ( \(M\) ). \\
\hline Fourth (Optional) & & Contains the block is gravity in the selected units. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the pitch attitude, in radians ( \(\theta\) ). \\
\hline Second & & Contains the pitch angular rate, in radians per second (q). \\
\hline Third & & Contains the pitch angular acceleration, in radians per second squared \((\dot{q})\). \\
\hline Fourth & Two-element vector & Contains the location of the body, in the flat Earth reference frame, \((X e, Z e)\). \\
\hline Fifth & Two-element vector & Contains the velocity of the body resolved into the body-fixed coordinate frame, \((u, w)\). \\
\hline Sixth & Two-element vector & Contains the acceleration of the body resolved into the body-fixed coordinate frame, \((A x, A z)\). \\
\hline
\end{tabular}

\section*{Examples}

See aero_guidance for an example of this block.

\section*{See Also}

3DOF (Wind Axes)
4th Order Point Mass (Longitudinal)
Custom Variable Mass 3DOF (Body Axes)
Custom Variable Mass 3DOF (Wind Axes)
Simple Variable Mass 3DOF (Body Axes)
Simple Variable Mass 3DOF (Wind Axes)

\section*{3DOF (Wind Axes)}

Implement three-degrees-of-freedom equations of motion with respect to wind axes

\section*{Library}

Equations of Motion/3DOF


The 3DOF (Wind Axes) block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat Earth reference frame.


The equations of motion are
\[
\begin{aligned}
& \dot{V}=\frac{F_{x_{\text {wind }}}}{m}-g \sin \gamma \\
& \dot{\alpha}=\frac{F_{z_{\text {uind }}}}{m V \cos \beta}+q+\frac{g}{V \cos \beta} \cos \gamma \\
& \dot{q}=\dot{\theta}=\frac{M_{y_{\text {bod }}}}{I_{y y}} \\
& \dot{\gamma}=q-\dot{\alpha}
\end{aligned}
\]
where the applied forces are assumed to act at the center of gravity of the body.

\section*{Dialog Box}
7. Function Block Parameters: 3DOF (Wind Axes) \(x\)
3DOF Wind EoM (mask) (link)
Integrate the three-degrees-of-freedom equations of motion in wind axes to determine position, velocity, attitude, and related values.

Parameters
Units: Metric (MKS)
Mass type: Fixed
Initial airspeed:
100
Initial flight path angle:
0
Initial incidence:
0
Initial body rotation rate:
0

Initial position ( \(\mathrm{x} z\) ):
\(\left[\begin{array}{ll}0 & 0\end{array}\right]\)
Initial mass:
1.0

Inertia body axes:
1.0

Gravity source: External

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline Metric (MKS) & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline English (Velocity in ft/s) & Pound & Foot pound & Feet per second squared & Feet per second & Feet & Slug & Slug foot squared \\
\hline English (Velocity in kts) & Pound & Foot pound & Feet per second squared & Knots & Feet & Slug & Slug foot squared \\
\hline
\end{tabular}

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & Mass and inertia vary linearly as a function of mass rate. \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Initial airspeed}

A scalar value for the initial velocity of the body, \(\left(V_{0}\right)\).

\section*{Initial flight path angle}

A scalar value for the initial flight path angle of the body, \(\left(\gamma_{0}\right)\).

\section*{Initial incidence}

A scalar value for the initial angle between the velocity vector and the body, \(\left(a_{0}\right)\).

\section*{Initial body rotation rate}

A scalar value for the initial body rotation rate, \(\left(q_{0}\right)\).

\section*{Initial position ( \(\mathbf{x}, \mathbf{z}\) )}

A two-element vector containing the initial location of the body in the flat Earth reference frame.

\section*{Initial Mass}

A scalar value for the mass of the body.

\section*{Inertia body axes}

A scalar value for the inertia of the body.

\section*{Gravity Source}

Specify source of gravity:
\begin{tabular}{|l|l|}
\hline External & Variable gravity input to block \\
\hline Internal & Constant gravity specified in mask \\
\hline
\end{tabular}

\section*{Acceleration due to gravity}

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0 .

\section*{Inputs and Outputs}
\begin{tabular}{ll} 
Input & Dimension Type \\
First & \begin{tabular}{l} 
Description \\
Contains the force acting along the wind \(x\) - \\
axis, \(\left(F_{x}\right)\).
\end{tabular} \\
Second & \begin{tabular}{l} 
Contains the force acting along the wind \(z\) - \\
axis, \(\left(F_{z}\right)\).
\end{tabular} \\
Third & \begin{tabular}{l} 
Contains the applied pitch moment in body \\
axes, \((M)\).
\end{tabular} \\
\begin{tabular}{l} 
Fourth \\
(Optional)
\end{tabular} & \begin{tabular}{l} 
Contains the block is gravity in the selected \\
units.
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
First & & \begin{tabular}{l} 
Contains the flight path angle, in radians \((\gamma)\). \\
Contains the pitch angular rate, in radians \\
per second \(\left(\omega_{y}\right)\).
\end{tabular} \\
Third & Two-element vector & \begin{tabular}{l} 
Contains the pitch angular acceleration, in \\
radians per second squared \(\left(d \omega_{y} / d t\right)\). \\
Contains the location of the body, in the flat \\
Earth reference frame, \((X e, Z e)\).
\end{tabular} \\
Fifth & Two-element vector & \begin{tabular}{l} 
Contains the velocity of the body resolved into \\
the wind-fixed coordinate frame, \((V, 0)\).
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
Sixth & Two-element vector & \begin{tabular}{l} 
Contains the acceleration of the body resolved \\
into the body-fixed coordinate frame, \((A x, A z)\).
\end{tabular} \\
Seventh & Scalar & \begin{tabular}{l} 
Contains the angle of attack, \((a)\).
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

3DOF (Body Axes)
4th Order Point Mass (Longitudinal)
Custom Variable Mass 3DOF (Body Axes)
Custom Variable Mass 3DOF (Wind Axes)
Simple Variable Mass 3DOF (Body Axes)
Simple Variable Mass 3DOF (Wind Axes)

\section*{3x3 Cross Product}

Calculate cross product of two 3-by-1 vectors

\section*{Library}

Utilities/Math Operations


The \(3 x 3\) Cross Product block computes cross (or vector) product of two vectors, \(A\) and \(B\), by generating a third vector, \(C\), in a direction normal to the plane containing \(A\) and \(B\), and with magnitude equal to the product of the lengths of \(A\) and \(B\) multiplied by the sine of the angle between them. The direction of \(C\) is that in which a right-handed screw would move in turning from \(A\) to \(B\).
\[
\begin{aligned}
A & =a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \\
B & =b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \\
C & =A \times B=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
\]

\section*{Dialog Box}
```

监 Function Block Parameters: 3x3 Cross Product
CrossProduct (mask) (link)
Calculate the cross product of two 3-by-1 vectors.

```

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & 3 -by-1 vector & \\
Second & 3-by-1 vector & \\
& & \\
Output & Dimension Type & Description \\
First & 3-by-1 vector & \\
&
\end{tabular}

\section*{4th Order Point Mass (Longitudinal)}

Calculate fourth-order point mass

\section*{Library}

Equations of Motion/Point Mass

\section*{Description}


The 4th Order Point Mass (Longitudinal) block performs the calculations for the translational motion of a single point mass or multiple point masses.


The translational motions of the point mass [ \(\left.X_{\text {East }} X_{\mathrm{Up}}\right]^{\mathrm{T}}\) are functions of airspeed \((V)\) and flight path angle ( \(\gamma\) ),
\[
\begin{aligned}
F_{x} & =m \dot{V} \\
F_{z} & =m V \dot{\gamma} \\
\dot{X}_{\text {East }} & =V \cos \gamma \\
\dot{X}_{U p} & =V \sin \gamma
\end{aligned}
\]
where the applied forces \(\left[F_{x} F_{z}\right]^{\mathrm{T}}\) are in a system defined as follows: \(x\)-axis is in the direction of vehicle velocity relative to air, \(z\)-axis is upward, and \(y\)-axis completes the right-handed frame. The mass of the body \(m\) is assumed constant.

\section*{Dialog Box}
```

/ Function Block Parameters: 4th Order Point Mass (Longitudinal)
4th Order Point Mass (Longitudinal) (mask) (link)
Calculate fourth-order point mass.
Parameters
Units: Metric (MKS)
Initial flight path angle:
0
Initial airspeed:
100
Initial downrange [East]:
0
Initial altitude [Up]:
0
Initial mass:
1.0

```

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|l|}
\hline Units & Forces & Velocity & Position \\
\hline Metric (MKS) & Newton & Meters per second & Meters \\
\hline \begin{tabular}{l} 
English (Velocity in \\
\(\mathrm{ft} / \mathrm{s})\)
\end{tabular} & Pound & Feet per second & Feet \\
\hline \begin{tabular}{l} 
English (Velocity in \\
kts)
\end{tabular} & Pound & Knots & Feet \\
\hline
\end{tabular}

\section*{Initial flight path angle}

The scalar or vector containing the initial flight path angle of the point mass(es).

\section*{Initial airspeed}

The scalar or vector containing the initial airspeed of the point mass(es).

\section*{Initial downrange}

The scalar or vector containing the initial downrange of the point mass(es).

\section*{Initial altitude}

The scalar or vector containing the initial altitude of the point mass(es).

\section*{Initial mass}

The scalar or vector containing the mass of the point mass(es).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & \begin{tabular}{l} 
Contains the force in \(x\)-axis in selected units. \\
Contains the force in \(z\)-axis in selected units.
\end{tabular} \\
Second & Description
\end{tabular} \begin{tabular}{ll} 
Output \(\quad\) Dimension Type & \begin{tabular}{l} 
Contains the flight path angle in radians.
\end{tabular} \\
First & \begin{tabular}{l} 
Contains the airspeed in selected units. \\
Contains the downrange or amount traveled East in \\
selected units. \\
Contains the altitude or amount traveled Up in selected \\
units.
\end{tabular} \\
Third &
\end{tabular}

\section*{Assumptions and Limitations}

The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

\author{
See Also \\ 4th Order Point Mass Forces (Longitudinal) \\ 3DOF (Body Axes) \\ 3DOF (Wind Axes) \\ 6th Order Point Mass (Coordinated Flight) \\ 6th Order Point Mass Forces (Coordinated Flight) \\ Custom Variable Mass 3DOF (Body Axes) \\ Custom Variable Mass 3DOF (Wind Axes) \\ Simple Variable Mass 3DOF (Body Axes) \\ Simple Variable Mass 3DOF (Wind Axes)
}

\section*{4th Order Point Mass Forces (Longitudinal)}

Calculate forces used by fourth-order point mass

\section*{Library}

Equations of Motion/Point Mass


The 4th Order Point Mass Forces (Longitudinal) block calculates the applied forces for a single point mass or multiple point masses.


The applied forces \(\left[\mathrm{F}_{\mathrm{x}} \mathrm{F}_{z}\right]^{\mathrm{T}}\) are in a system defined as follows: \(x\)-axis is in the direction of vehicle velocity relative to air, \(z\)-axis is upward, and \(y\)-axis completes the right-handed frame. They are functions of lift \((L)\), drag \((D)\), thrust \((T)\), weight \((W)\), flight path angle \((\gamma)\), angle of attack ( \(\alpha\) ), and bank angle ( \(\mu\) ).
\[
\begin{aligned}
& F_{z}=(L+T \sin \alpha) \cos \mu-W \cos \gamma \\
& F_{x}=T \cos \alpha-D-W \sin \gamma
\end{aligned}
\]

\section*{Dialog Box}
1. Function Block Parameters: 4th Order Point Mass Forces (Longitudi... \(\quad \times\)

4th Order Point Mass Forces (Longitudinal) (mask) (link)
Calculate forces used by fourth-order point mass.


\section*{Inputs and Outputs}
\begin{tabular}{ll} 
Input \(\quad\) Dimension Type & Description \\
\hline First & Contains the lift in units of force. \\
Second & Contains the drag in units of force. \\
Third & Contains the weight in units of force. \\
Fourth & Contains the thrust in units of force. \\
Fifth & Contains the flight path angle in radians. \\
Sixth & \begin{tabular}{l} 
Contains the bank angle in radians. \\
Seventh
\end{tabular} \\
\begin{tabular}{ll} 
Contains the angle of attack in radians.
\end{tabular} \\
\begin{tabular}{ll} 
Output & Dimension Type \\
First & Description \\
Second & \begin{tabular}{l} 
Contains the force in \(x\)-axis in units of force. \\
Contains the force in \(z\)-axis in units of force.
\end{tabular} \\
\hline
\end{tabular} &
\end{tabular}

\section*{Assumptions and Limitations}

The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

\section*{See Also}

4th Order Point Mass (Longitudinal)
6th Order Point Mass (Coordinated Flight)
6th Order Point Mass Forces (Coordinated Flight)

\section*{6DoF Animation}

Create 3-D MATLAB Graphics animation of six-degrees-of-freedom object

\section*{Library}

Animation


The 6DoF Animation block displays a 3-D animated view of a six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using MATLAB Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to create and display the animation.

This block does not produce deployable code, but can be used with Simulink Coder external mode as a SimViewingDevice.

\section*{Dialog Box}
```

諒 Sink Block Parameters: 6DoF Animation
6DoF_Animation (mask) (link)
Create a 3-D animated view of a six-degrees-of-freedom craft, where
X,Y, and Z craft position (Position) and craft Euler angles (Euler) are
inputs.
Display parameters are in the same units of length as the input
parameters.
Parameters
Axes limits [xmin xmax ymin ymax zmin zmax]:
[0 4000-2000 2000-5000-3000]
Time interval between updates:
0 . 1
Size of craft displayed:
1.0
Static object position [xp yp zp]:
[4000 0-5000]
Enter view: Fixed position
Position of camera [xc yc zc]:
[2000 500-3150]
View angle:
10
v Enable animation

```

\section*{Axes limits [xmin xmax ymin ymax zmin zmax]}

Specifies the three-dimensional space to be viewed.

\section*{Time interval between updates}

Specifies the time interval at which the animation is redrawn.

\section*{Size of craft displayed}

Scale factor to adjust the size of the craft and target.

\section*{Static object position}

Specifies the altitude, the crossrange position, and the downrange position of the target.

\section*{Enter view}

Selects preset MATLAB Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of camera and View angle are used to customize the position and field of view for the selected view. Possible views are
- Fixed position
- Cockpit
- Fly alongside

\section*{Position of camera [xc yc zc]}

Specifies the MATLAB Graphics parameter CameraPosition on Axes Properties for the figure axes. Used in all cases except for the Cockpit view.

\section*{View angle}

Specifies the MATLAB Graphics parameter CameraViewAngle on Axes Properties for the figure axes in degrees.

\section*{Enable animation}

When selected, the animation is displayed during the simulation. If not selected, the animation is not displayed.

\section*{Inputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Vector & \begin{tabular}{l} 
Contains the altitude, the crossrange position, \\
and the downrange position of the craft in Earth \\
coordinates.
\end{tabular} \\
Second & Vector & Contains the Euler angles of the craft.
\end{tabular}

\section*{See Also}

\author{
3DoF Animation
}

\section*{FlightGear Preconfigured 6DoF Animation}

The figure axes properties CameraPosition and CameraViewAngle on Axes Properties

\section*{6DOF (Euler Angles)}

Implement Euler angle representation of six-degrees-of-freedom equations of motion

\section*{Library}

Equations of Motion/6DOF


The 6DOF (Euler Angles) block considers the rotation of a body-fixed coordinate frame \(\left(X_{b}, Y_{b}, Z_{b}\right)\) about a flat Earth reference frame ( \(X_{e}, Y_{e}, Z_{e}\) ). The origin of the bodyfixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.


\section*{Flat Earth reference frame}

The translational motion of the body-fixed coordinate frame is given below, where the applied forces \(\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}\) are in the body-fixed frame, and the mass of the body \(m\) is assumed constant.
\[
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega} \times \bar{V}_{b}\right) \\
& \bar{V}_{b}=\left[\begin{array}{l}
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right], \bar{\omega}=\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
\end{aligned}
\]

The rotational dynamics of the body-fixed frame are given below, where the applied moments are \([L M N]^{\mathrm{T}}\), and the inertia tensor \(I\) is with respect to the origin O .
\[
\begin{aligned}
& \bar{M}_{B}=\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}+\bar{\omega} \times(I \bar{\omega}) \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
\]

The relationship between the body-fixed angular velocity vector, \([p q r]^{\mathrm{T}}\), and the rate of change of the Euler angles, \([\dot{\phi} \dot{\theta} \dot{\psi}]^{\mathrm{T}}\), can be determined by resolving the Euler rates into the body-fixed coordinate frame.
\[
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{c}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
\]

Inverting \(J\) then gives the required relationship to determine the Euler rate vector.
\[
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \phi \tan \theta) & (\cos \phi \tan \theta) \\
0 & \cos \phi & -\sin \phi \\
0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
\]

\section*{Dialog Box}
\begin{tabular}{l}
\hline Function Block Parameters: 6DOF (Euler Angles) \\
6DOF EoM (Body Axis) (mask) \\
Integrate the six-degrees-of-freedom equations of motion in body \\
axis. \\
Parameters \\
Units: Metric (MKS) \\
Mass type: Fixed \\
Representation: Euler Angles \\
Initial position in inertial axes [Xe,Ye,Ze]: \\
\hline\([0000\) \\
Initial velocity in body axes [ \(\mathrm{U}, \mathrm{v}, \mathrm{w}]\) : \\
\hline\([000\) ] \\
Initial Euler orientation [roll, pitch, yaw]: \\
\hline\([000\) ] \\
Initial body rotation rates [p,q,r]: \\
\hline\([000]\) \\
Initial mass: \\
\hline 1.0 \\
Inertia: \\
\hline eye(3) \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Units } & \text { Forces } & \text { Moment } & \text { Acceleration } & \text { Velocity } & \text { Position } & \text { Mass } \\ \hline \begin{array}{l}\text { Metric } \\ \text { (MKS) }\end{array} & \text { Newton } & \begin{array}{l}\text { Newton } \\ \text { meter }\end{array} & \begin{array}{l}\text { Meters per } \\ \text { second squared }\end{array} & \begin{array}{l}\text { Meters } \\ \text { per } \\ \text { second }\end{array} & \text { Meters } & \text { Kilogram }\end{array} \begin{array}{l}\text { Kilogram } \\ \text { meter } \\ \text { squared }\end{array}\right]\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second
\end{tabular} & Feet & Slug \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in kts \()\)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug \\
squared
\end{tabular}\(\left|\begin{array}{l}\text { Slug foot } \\
\text { squared }\end{array}\right|\)

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & Mass and inertia vary linearly as a function of mass rate. \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Euler Angles & Use Euler angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Euler Angles selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial velocity in body axes}

The three-element vector for the initial velocity in the body-fixed coordinate frame.

\section*{Initial Euler rotation}

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

\section*{Initial body rotation rates}

The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Initial Mass}

The mass of the rigid body.

\section*{Inertia}

The 3-by-3 inertia tensor matrix \(I\).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Vector & \begin{tabular}{l} 
Contains the three applied forces in body-fixed \\
coordinate frame.
\end{tabular} \\
Second & Vector & \begin{tabular}{l} 
Contains the three applied moments in body- \\
fixed coordinate frame.
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l} 
Contains the velocity in the flat Earth reference \\
frame.
\end{tabular} \\
Second & Three-element vector & \begin{tabular}{l} 
Contains the position in the flat Earth reference \\
frame.
\end{tabular} \\
Third & Three-element vector & \begin{tabular}{l} 
Contains the Euler rotation angles [roll, pitch, \\
yaw], in radians.
\end{tabular} \\
Fourth & 3-by-3 matrix & \begin{tabular}{l} 
Contains the coordinate transformation from \\
flat Earth axes to body-fixed axes.
\end{tabular} \\
Fifth & Three-element vector & \begin{tabular}{l} 
Contains the velocity in the body-fixed frame. \\
Contains the angular rates in body-fixed axes,
\end{tabular} \\
Sixth & Three-element vector & \begin{tabular}{l} 
in radians per second.
\end{tabular} \\
Seventh & Three-element vector & \begin{tabular}{l} 
Contains the angular accelerations in body- \\
fixed axes, in radians per second squared.
\end{tabular} \\
Eighth & Three-element vector & \begin{tabular}{l} 
Contains the accelerations in body-fixed axes.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

\section*{Examples}

See the aeroblk_six_dof airframe in aeroblk_HL20 and asbhl20 for examples of this block.

\section*{Reference}

Mangiacasale, L., Flight Mechanics of a \(\mu\)-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

\section*{See Also}

6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)

4 Blocks - Alphabetical List

Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{6DOF (Quaternion)}

Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to body axes

\section*{Library}

Equations of Motion/6DOF


For a description of the coordinate system and the translational dynamics, see the block description for the 6DOF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below. The gain \(K\) drives the norm of the quaternion state vector to 1.0 should \(\varepsilon\) become nonzero. You must choose the value of this gain with care, because a large value improves the decay rate of the error in the norm, but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one element of the quaternion vector is spread equally among all the elements, potentially increasing the error in the state vector.
\[
\begin{aligned}
& {\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=1 / 2\left[\begin{array}{cccc}
0 & -p & -q & -r \\
p & 0 & r & -q \\
q & -r & 0 & p \\
r & q & -p & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]+K \varepsilon\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]} \\
& \varepsilon=1-\left(q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}\right)
\end{aligned}
\]

\section*{Dialog Box}
\begin{tabular}{|c|c|c|}
\hline 2) Function Block Parameters: 6DOF (Quaternion) & & \(x^{x}\) \\
\hline \multicolumn{3}{|l|}{6DOF EoM (Body Axis) (mask) (link)} \\
\hline \multicolumn{3}{|l|}{Integrate the six-degrees-of-freedom equations of motion in body axis.} \\
\hline \multicolumn{3}{|l|}{Parameters} \\
\hline Units: Metric (MKS) & & \(\checkmark\) \\
\hline Mass type: Fixed & & \(\bullet\) \\
\hline Representation: Quaternion & & \(\checkmark\) \\
\hline \multicolumn{3}{|l|}{Initial position in inertial axes [ \(\mathrm{Xe}, \mathrm{Ye}, \mathrm{Ze}\) ]:} \\
\hline \multicolumn{3}{|l|}{\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline \multicolumn{3}{|l|}{Initial velocity in body axes \([\mathrm{U}, \mathrm{v}, \mathrm{W}]\) :} \\
\hline \multicolumn{3}{|l|}{\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline \multicolumn{3}{|l|}{Initial Euler orientation [roll, pitch, yaw]:} \\
\hline \multicolumn{3}{|l|}{\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline \multicolumn{3}{|l|}{Initial body rotation rates [ \(\mathrm{p}, \mathrm{q}, \mathrm{r}]\) :} \\
\hline \multicolumn{3}{|l|}{\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline \multicolumn{3}{|l|}{Initial mass:} \\
\hline \multicolumn{3}{|l|}{1.0} \\
\hline \multicolumn{3}{|l|}{Inertia:} \\
\hline \multicolumn{3}{|l|}{eye(3)} \\
\hline \multicolumn{3}{|l|}{Gain for quaternion normalization:} \\
\hline \multicolumn{3}{|l|}{1.0} \\
\hline OK Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline Metric (MKS) & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & \begin{tabular}{l} 
Foot \\
pound
\end{tabular} & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second
\end{tabular} & Feet & Slug \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in kts)
\end{tabular} & Pound & \begin{tabular}{l} 
Foot \\
pound
\end{tabular} & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug \\
squared
\end{tabular}\(\left|\begin{array}{l}\text { Slug foot } \\
\text { squared }\end{array}\right|\)

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & Mass and inertia vary linearly as a function of mass rate. \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Euler Angles & Use Euler angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Quaternion selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial velocity in body axes}

The three-element vector for the initial velocity in the body-fixed coordinate frame.

\section*{Initial Euler rotation}

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

\section*{Initial body rotation rates}

The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Initial Mass}

\section*{The mass of the rigid body.}

\section*{Inertia matrix}

The 3 -by- 3 inertia tensor matrix \(I\).
Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0 .

\section*{Inputs and Outputs}
\(\begin{array}{lll}\text { Input } & \text { Dimension Type } & \text { Description } \\
\text { First } & \text { Vector } & \begin{array}{l}\text { Contains the three applied forces. } \\
\text { Second } \\
\text { Contains the three applied moments. }\end{array} \\
\text { Output } & \text { Dimension Type } & \begin{array}{l}\text { Description }\end{array} \\
\text { First } & \text { Three-element vector } & \begin{array}{l}\text { Contains the velocity in the flat Earth reference } \\
\text { frame. }\end{array} \\
\text { Second } & \text { Three-element vector } & \begin{array}{l}\text { Contains the position in the flat Earth reference } \\
\text { frame. }\end{array} \\
\text { Third } & \text { Three-element vector } & \begin{array}{l}\text { Contains the Euler rotation angles [roll, pitch, } \\
\text { yaw], in radians. }\end{array} \\
\text { Fourth } & \text { 3-by-3 matrix } & \begin{array}{l}\text { Contains the coordinate transformation from } \\
\text { flat Earth axes to body-fixed axes. } \\
\text { Contains the velocity in the body-fixed frame. } \\
\text { Fifth }\end{array} \\
\text { Sixth } & \text { Three-element vector } & \text { Three-element vector }\end{array} \begin{array}{l}\text { Contains the angular rates in body-fixed axes, } \\
\text { in radians per second. } \\
\text { Seventh }\end{array} \quad\) Three-element vector \(\left.\quad \begin{array}{l}\text { Contains the angular accelerations in body- } \\
\text { fixed axes, in radians per second squared. }\end{array}\right]\)\begin{tabular}{ll} 
Contains the accelerations in body-fixed axes.
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

\section*{Reference}

Mangiacasale, L., Flight Mechanics of a \(\mu\)-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

\section*{See Also}

6DOF (Euler Angles)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{6DOF ECEF (Quaternion)}

Implement quaternion representation of six-degrees-of-freedom equations of motion in Earth-centered Earth-fixed (ECEF) coordinates

\section*{Library}

Equations of Motion/6DOF


The 6DOF ECEF (Quaternion) block considers the rotation of a Earth-centered Earthfixed (ECEF) coordinate frame ( \(X_{E C E F}, Y_{E C E F}, Z_{E C E F}\) ) about an Earth-centered inertial (ECI) reference frame ( \(X_{E C I}, Y_{E C I}, Z_{E C I}\) ). The origin of the ECEF coordinate frame is the center of the Earth, additionally the body of interest is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to consider only the constant rotation of the ellipsoid Earth ( \(\omega_{e}\) ) including an initial celestial longitude \(\left(L_{G}(0)\right)\). This excellent approximation allows the forces due to the Earth's complex motion relative to the "fixed stars" to be neglected.


The translational motion of the ECEF coordinate frame is given below, where the applied forces \(\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}\) are in the body frame, and the mass of the body \(m\) is assumed constant.
\[
\bar{F}_{b}=\left[\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega}_{b} \times \bar{V}_{b}+D C M_{b f} \bar{\omega}_{e} \times \bar{V}_{b}+D C M_{b f}\left(\bar{\omega}_{e} \times\left(\bar{\omega}_{e} \times \bar{X}_{f}\right)\right)\right)
\]
where the change of position in ECEF \(\dot{\bar{x}}_{f}\) is calculated by
\[
\dot{\bar{x}}_{f}=D C M_{f b} \bar{V}_{b}
\]
and the velocity of the body with respect to ECEF frame, expressed in body frame \(\left(\bar{V}_{b}\right)\), angular rates of the body with respect to ECI frame, expressed in body frame \(\left(\bar{\omega}_{b}\right)\). Earth
rotation rate ( \(\bar{\omega}_{e}\) ), and relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body frame ( \(\bar{\omega}_{\text {rel }}\) ) are defined as
\[
\begin{aligned}
& \bar{V}_{b}=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right], \bar{\omega}_{r e l}=\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right], \bar{\omega}_{e}=\left[\begin{array}{c}
0 \\
0 \\
\omega_{e}
\end{array}\right], \bar{\omega}_{b}=\bar{\omega}_{r e l}+D C M_{b f} \bar{\omega}_{e}+D C M_{b e} \bar{\omega}_{n e d} \\
& \bar{\omega}_{n e d}=\left[\begin{array}{c}
\dot{l} \cos \mu \\
-\dot{\mu} \\
-\dot{l} \sin \mu
\end{array}\right]=\left[\begin{array}{c}
V_{E} /(N+h) \\
-V_{N} /(M+h) \\
V_{E} \bullet \tan \mu /(N+h)
\end{array}\right]
\end{aligned}
\]

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied moments are \([L M N]^{\mathrm{T}}\), and the inertia tensor \(I\) is with respect to the origin 0 .
\[
\begin{aligned}
& \bar{M}_{b}=\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}_{b}+\bar{\omega}_{b} \times\left(I \bar{\omega}_{b}\right) \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
\]

The integration of the rate of change of the quaternion vector is given below.
\[
\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=-1 / 2\left[\begin{array}{cccc}
0 & \omega_{b}(1) & \omega_{b}(2) & \omega_{b}(3) \\
-\omega_{b}(1) & 0 & -\omega_{b}(3) & \omega_{b}(2) \\
-\omega_{b}(2) & \omega_{b}(3) & 0 & -\omega_{b}(1) \\
-\omega_{b}(3) & -\omega_{b}(2) & \omega_{b}(1) & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
\]

\section*{Dialog Box}



\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline English (Velocity in ft/s) & Pound & Foot pound & Feet per second squared & Feet per second & Feet & Slug & Slug foot squared \\
\hline English (Velocity in kts) & Pound & Foot pound & Feet per second squared & Knots & Feet & Slug & Slug foot squared \\
\hline
\end{tabular}

\section*{Mass type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l} 
Mass and inertia vary linearly as a function of \\
mass rate (see Simple Variable Mass 6DOF ECEF \\
(Quaternion)).
\end{tabular} \\
\hline Custom Variable & \begin{tabular}{l} 
Mass and inertia variations are customizable (see \\
Simple Variable Mass 6DOF (Quaternion)).
\end{tabular} \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Initial position in geodetic latitude, longitude and altitude}

The three-element vector for the initial location of the body in the geodetic reference frame, in degrees. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

\section*{Initial velocity in body axes}

The three-element vector containing the initial velocity of the body with respect to ECEF frame, expressed in body frame..

\section*{Initial Euler orientation}

The three-element vector containing the initial Euler rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and north-eastdown (NED) coordinate systems.

\section*{Initial body rotation rates}

The three-element vector for the initial angular rates of the body with respect to NED frame, expressed in body frame, in radians per second.

\section*{Initial mass}

The mass of the rigid body.

\section*{Inertia}

The 3-by-3 inertia tensor matrix \(I\), in body-fixed axes.

\section*{Planet model}

Specifies the planet model to use: Custom or Earth (WGS84).

\section*{Flattening}

Specifies the flattening of the planet. This option is only available when Planet model is set to Custom.

\section*{Equatorial radius of planet}

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for ECEF position. This option is only available when Planet model is set to Custom.

\section*{Rotational rate}

Specifies the scalar rotational rate of the planet in rad/s. This option is only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian's initial celestial longitude:
\begin{tabular}{|l|l|}
\hline Internal & Use celestial longitude value from mask dialog. \\
\hline External & Use external input for celestial longitude value. \\
\hline
\end{tabular}

\section*{Celestial longitude of Greenwich}

The initial angle between Greenwich meridian and the \(x\)-axis of the ECI frame.

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Vector & Contains the three applied forces in body-fixed axes. \\
Second & Vector & \begin{tabular}{l} 
Contains the three applied moments in body-fixed \\
\\
\end{tabular} \\
& &
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & \begin{tabular}{l} 
Description
\end{tabular} \\
First & Vector & \begin{tabular}{l} 
Contains the velocity of the body with respect to \\
ECEF frame, expressed in ECEF frame.
\end{tabular} \\
Second & \begin{tabular}{l} 
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Contains the position in ECEF reference frame.
\end{tabular} \\
Third & \begin{tabular}{l} 
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Contains the position in geodetic latitude, longitude \\
and altitude, in degrees, degrees and selected units of \\
length respectively.
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & \multicolumn{1}{c}{ Description } \\
Fourth & \begin{tabular}{l} 
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Contains the body rotation angles [roll, pitch, yaw], in \\
radians. Euler rotation angles are those between the \\
body and north-east-down (NED) coordinate systems. \\
Applies to the coordinate transformation from ECI \\
axes to body-fixed axes
\end{tabular} \\
Fifth & 3-by-3 matrix \\
Sixth & 3-by-3 matrix & \begin{tabular}{l} 
Applies to the coordinate transformation from NED \\
axes to body-fixed axes.
\end{tabular} \\
Seventh & 3-by-3 matrix & \begin{tabular}{l} 
Applies to the coordinate transformation from ECEF \\
axes to NED axes.
\end{tabular} \\
Eighth & \begin{tabular}{l} 
Three-element \\
vector \\
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Contains the velocity of the body with respect to \\
ECEF frame, expressed in the body frame. \\
Contains the relative angular rates of the body with \\
respect to NED frame, expressed in the body frame, in \\
radians per second. \\
Tentains the angular rates of the body with respect
\end{tabular} \\
Tenth & \begin{tabular}{l} 
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Co the ECI frame, expressed in body frame, in radians \\
per second.
\end{tabular} \\
Eleventh & \begin{tabular}{l} 
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Contains the angular accelerations of the body with \\
respect to ECI frame, expressed in the body frame, in \\
radians per second squared.
\end{tabular} \\
Twelfth & \begin{tabular}{l} 
Three-element \\
vector
\end{tabular} & \begin{tabular}{l} 
Contains the accelerations in body-fixed axes.
\end{tabular} \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

This implementation assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

This implementation generates a geodetic latitude that lies between \(\pm 90\) degrees, and longitude that lies between \(\pm 180\) degrees. Additionally, the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the \(x\)-axis intersects the Greenwich meridian and the equator, the \(z\)-axis is the mean spin axis of the planet, positive to the north, and the \(y\)-axis completes the right-handed system.

The implementation of the ECI coordinate system assumes that the origin is at the center of the planet, the \(x\)-axis is the continuation of the line from the center of the Earth through the center of the Sun toward the vernal equinox, the \(z\)-axis points in the direction of the mean equatorial plane's north pole, positive to the north, and the \(y\)-axis completes the right-handed system.

\section*{References}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second Edition, John Wiley \& Sons, New York, 2003.

McFarland, Richard E., A Standard Kinematic Model for Flight simulation at NASAAmes, NASA CR-2497.
"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2A.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)

\author{
Custom Variable Mass 6DOF Wind (Quaternion) \\ Custom Variable Mass 6DOF Wind (Wind Angles) \\ Simple Variable Mass 6DOF (Euler Angles) \\ Simple Variable Mass 6DOF (Quaternion) \\ Simple Variable Mass 6DOF ECEF (Quaternion) \\ Simple Variable Mass 6DOF Wind (Quaternion) \\ Simple Variable Mass 6DOF Wind (Wind Angles)
}

\section*{6DOF Wind (Quaternion)}

Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to wind axes

\section*{Library}

Equations of Motion/6DOF


The 6DOF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame ( \(X_{w}, Y_{w}, Z_{w}\) ) about an flat Earth reference frame ( \(X_{e}, Y_{e}, Z_{e}\) ). The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.


Flat Earth reference frame

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces \(\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}\) are in the wind-fixed frame, and the mass of the body \(m\) is assumed constant.
\[
\begin{aligned}
& \bar{F}_{w}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{w}+\bar{\omega}_{w} \times \bar{V}_{w}\right) \\
& \bar{V}_{w}=\left[\begin{array}{l}
V \\
0 \\
0
\end{array}\right], \bar{\omega}_{w}=\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right], \bar{\omega}_{b}=\left[\begin{array}{c}
p_{b} \\
q_{b} \\
r_{b}
\end{array}\right]
\end{aligned}
\]

The rotational dynamics of the body-fixed frame are given below, where the applied moments are \([L M N]^{\mathrm{T}}\), and the inertia tensor \(I\) is with respect to the origin \(O\). Inertia tensor \(I\) is much easier to define in body-fixed frame.
\[
\begin{aligned}
& \bar{M}_{b}=\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}_{b}+\bar{\omega}_{b} \times\left(I \bar{\omega}_{b}\right) \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
\]

The integration of the rate of change of the quaternion vector is given below.
\[
\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=-1 / 2\left[\begin{array}{cccc}
0 & p & q & r \\
-p & 0 & -r & q \\
-q & r & 0 & -p \\
-r & -q & p & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
\]

\section*{Dialog Box}


\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second
\end{tabular} & Feet & Slug \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in kts)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug \\
squared
\end{tabular}\(\left|\begin{array}{l}\text { Slug foot } \\
\text { squared }\end{array}\right|\)

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l} 
Mass and inertia vary linearly as a function of mass \\
rate.
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Wind Angles & Use wind angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Quaternion selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial airspeed, angle of attack, and sideslip angle}

The three-element vector containing the initial airspeed, initial angle of attack and initial sideslip angle.

\section*{Initial wind orientation}

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

\section*{Initial body rotation rates}

The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Initial mass}

The mass of the rigid body.

\section*{Inertia matrix}

The 3-by- 3 inertia tensor matrix \(I\), in body-fixed axes.

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & \multicolumn{1}{c}{ Description } \\
First & Vector & \begin{tabular}{l} 
Contains the three applied forces in wind-fixed \\
axes.
\end{tabular} \\
Second & Vector & \begin{tabular}{l} 
Contains the three applied moments in body- \\
fixed axes.
\end{tabular} \\
Output & Dimension Type & \begin{tabular}{l} 
Description
\end{tabular} \\
First & Three-element vector & \begin{tabular}{l} 
Contains the velocity in the flat Earth reference \\
frame.
\end{tabular} \\
Second & Three-element vector & \begin{tabular}{l} 
Contains the position in the flat Earth reference \\
frame.
\end{tabular} \\
Third & Three-element vector & \begin{tabular}{l} 
Contains the wind rotation angles [bank, flight \\
path, heading], in radians.
\end{tabular} \\
Fourth & 3-by-3 matrix & \begin{tabular}{l} 
Contains the coordinate transformation from \\
flat Earth axes to wind-fixed axes.
\end{tabular} \\
Fifth & Three-element vector & \begin{tabular}{l} 
Contains the velocity in the wind-fixed frame. \\
Contains the angle of attack and sideslip angle, \\
in radians.
\end{tabular} \\
Sixth & Two-element vector & Two-element vector
\end{tabular} \begin{tabular}{l} 
Contains the rate of change of angle of attack \\
and rate of change of sideslip angle, in radians
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
Tenth & Three-element vector & Contains the accelerations in body-fixed axes.
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)

Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{6DOF Wind (Wind Angles)}

Implement wind angle representation of six-degrees-of-freedom equations of motion

\section*{Library}

Equations of Motion/6DOF

\section*{Description}


For a description of the coordinate system employed and the translational dynamics, see the block description for the 6DOF Wind (Quaternion) block.

The relationship between the wind angles, \([\mu \gamma \chi]^{T}\), can be determined by resolving the wind rates into the wind-fixed coordinate frame.
\[
\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{c}
\dot{\mu} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{c}
0 \\
\dot{\gamma} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\chi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{c}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]
\]

Inverting \(J\) then gives the required relationship to determine the wind rate vector.
\[
\left[\begin{array}{c}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]=J\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\
0 & \cos \mu & -\sin \mu \\
0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma}
\end{array}\right]\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]
\]

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.
\[
\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
\]

Using this relationship in the wind rate vector equations, gives the relationship between the wind rate vector and the body-fixed angular rates.
\[
\left[\begin{array}{c}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]=J\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\
0 & \cos \mu & -\sin \mu \\
0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma}
\end{array}\right] D M C_{w b}\left[\begin{array}{c}
p_{b}-\hat{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
\]

\section*{Dialog Box}


\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l} 
Metric \\
(MKS )
\end{tabular} & Newton & \begin{tabular}{l} 
Newton \\
meter
\end{tabular} & \begin{tabular}{l} 
Meters per second \\
squared
\end{tabular} & \begin{tabular}{l} 
Meters \\
per \\
second
\end{tabular} & Meters & Kilogram & \begin{tabular}{l} 
Kilogram \\
meter \\
squared
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & \begin{tabular}{l} 
Foot \\
pound
\end{tabular} & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second
\end{tabular} & Feet & Slug & \begin{tabular}{l} 
Slug foot \\
squared
\end{tabular} \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in kts \()\)
\end{tabular} & Pound & \begin{tabular}{l} 
Foot \\
pound
\end{tabular} & \begin{tabular}{l} 
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug & \begin{tabular}{l} 
Slug foot \\
squared
\end{tabular} \\
\hline
\end{tabular}

\section*{Mass type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & Mass and inertia vary linearly as a function of mass rate. \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Fixed selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Wind Angles & Use wind angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Wind Angles selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial airspeed, angle of attack, and sideslip angle}

The three-element vector containing the initial airspeed, initial angle of attack and initial sideslip angle.

\section*{Initial wind orientation}

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

\section*{Initial body rotation rates}

The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Initial mass}

The mass of the rigid body.

\section*{Inertia}

The 3 -by- 3 inertia tensor matrix \(I\), in body-fixed axes.

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & \multicolumn{1}{c}{ Description } \\
First & Vector & \(\begin{array}{l}\text { Contains the three applied forces in wind-fixed } \\
\text { axes. }\end{array}\) \\
Second & Vector & \(\begin{array}{l}\text { Contains the three applied moments in body- } \\
\text { fixed axes. }\end{array}\) \\
Output & Dimension Type & \(\begin{array}{l}\text { Description }\end{array}\) \\
First & Three-element vector & \(\begin{array}{l}\text { Contains the velocity in the flat Earth reference } \\
\text { frame. }\end{array}\) \\
Second & Three-element vector & \(\begin{array}{l}\text { Contains the position in the flat Earth reference } \\
\text { frame. }\end{array}\) \\
Third & Three-element vector & \(\begin{array}{l}\text { Contains the wind rotation angles [bank, flight } \\
\text { path, heading], in radians. }\end{array}\) \\
Fourth & 3-by-3 matrix & \(\begin{array}{l}\text { Contains the coordinate transformation from } \\
\text { flat Earth axes to wind-fixed axes. }\end{array}\) \\
Fifth & Three-element vector & \(\begin{array}{l}\text { Contains the velocity in the wind-fixed frame. } \\
\text { Contains the angle of attack and sideslip angle, } \\
\text { Sixth }\end{array}\) \\
Two-element vector & \(\begin{array}{l}\text { in radians. } \\
\text { Contains the rate of change of angle of attack } \\
\text { and rate of change of sideslip angle, in radians }\end{array}\) \\
Seventh & Two-element vector & Three-element vector
\end{tabular} \(\left.\begin{array}{l}\text { per second. } \\
\text { Contains the angular rates in body-fixed axes, } \\
\text { in radians per second. }\end{array}\right]\)\begin{tabular}{ll} 
Contains the angular accelerations in body-
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
Tenth & Three-element vector & Contains the accelerations in body-fixed axes.
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)

\title{
Simple Variable Mass 6DOF ECEF (Quaternion)
}

Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{6th Order Point Mass (Coordinated Flight)}

Calculate sixth-order point mass in coordinated flight

\section*{Library}

Equations of Motion/Point Mass


The 6th Order Point Mass (Coordinated Flight) block performs the calculations for the translational motion of a single point mass or multiple point masses.


The translational motion of the point mass \(\left[X_{\text {East }} X_{\text {North }} X_{U p}\right]^{\mathrm{T}}\) are functions of airspeed ( \(V\) ), flight path angle ( \(\gamma\) ), and heading angle \((x)\),
\[
\begin{aligned}
& F_{x}=m V \\
& F_{y}=(m V \cos \gamma) \dot{\chi} \\
& F_{z}=m V \dot{\gamma} \\
& \dot{X}_{\text {East }}=V \cos \chi \cos \gamma \\
& \dot{X}_{\text {North }}=V \sin \chi \cos \gamma \\
& \dot{X}_{U p}=V \sin \gamma
\end{aligned}
\]
where the applied forces \(\left[F_{x} F_{y} F_{h}\right]^{\mathrm{T}}\) are in a system is defined by \(x\)-axis in the direction of vehicle velocity relative to air, \(z\)-axis is upward, and \(y\)-axis completes the right-handed frame, and the mass of the body \(m\) is assumed constant.

\section*{Dialog Box}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{F Function Block Parameters: 6th Order Point Mass (Coordinated Flig... \(x^{\text {a }}\)} \\
\hline \multicolumn{3}{|l|}{6th Order Point Mass (Coordinated Flight) (mask) (link)} \\
\hline \multicolumn{3}{|l|}{Calculate sixth-order point mass in coordinated flight.} \\
\hline \multicolumn{3}{|l|}{Parameters} \\
\hline Units: Metric (MKS) & & \\
\hline \multicolumn{3}{|l|}{Initial flight path angle:} \\
\hline \multicolumn{3}{|l|}{0} \\
\hline \multicolumn{3}{|l|}{Initial heading angle:} \\
\hline \multicolumn{3}{|l|}{0} \\
\hline \multicolumn{3}{|l|}{Initial airspeed:} \\
\hline \multicolumn{3}{|l|}{100} \\
\hline \multicolumn{3}{|l|}{Initial downrange [East]:} \\
\hline \multicolumn{3}{|l|}{0} \\
\hline \multicolumn{3}{|l|}{Initial crossrange [North]:} \\
\hline \multicolumn{3}{|l|}{0} \\
\hline \multicolumn{3}{|l|}{Initial altitude [Up]:} \\
\hline \multicolumn{3}{|l|}{0} \\
\hline \multicolumn{3}{|l|}{Initial mass:} \\
\hline \multicolumn{3}{|l|}{1.0} \\
\hline OK & Help & Apply \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|l|}
\hline Units & Forces & Velocity & Position \\
\hline Metric (MKS) & Newton & Meters per second & Meters \\
\hline \begin{tabular}{l} 
English (Velocity \\
in ft/s)
\end{tabular} & Pound & Feet per second & Feet \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Units & Forces & Velocity & Position \\
\hline \begin{tabular}{l} 
English (Velocity \\
in kts)
\end{tabular} & Pound & Knots & Feet \\
\hline
\end{tabular}

\section*{Initial flight path angle}

The scalar or vector containing initial flight path angle of the point mass(es).
Initial heading angle
The scalar or vector containing initial heading angle of the point mass(es).

\section*{Initial airspeed}

The scalar or vector containing initial airspeed of the point mass(es).

\section*{Initial downrange [East]}

The scalar or vector containing initial downrange of the point mass(es).

\section*{Initial crossrange [North]}

The scalar or vector containing initial crossrange of the point mass(es).

\section*{Initial altitude [Up]}

The scalar or vector containing initial altitude of the point mass(es).

\section*{Initial mass}

The scalar or vector containing mass of the point mass(es).

\section*{Inputs and Outputs}
\begin{tabular}{ll} 
Input & Dimension Type \\
\hline First & Description \\
Second & Contains the force in \(x\)-axis in selected units. \\
Third & Contains the force in \(y\)-axis in selected units. \\
Output \(\quad\) Contains the force in \(z\)-axis in selected units. \\
\hline First & \\
Second & \begin{tabular}{l} 
Description
\end{tabular} \\
Third & \begin{tabular}{l} 
Contains the flight path angle in radians. \\
Courth
\end{tabular} \\
& \begin{tabular}{l} 
Contains the airspeed in selected units. \\
Contains the downrange or amount traveled East in \\
selected units.
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
Output Dimension Type & Description \\
Fifth & \begin{tabular}{l} 
Contains the crossrange or amount traveled North in \\
selected units.
\end{tabular} \\
Sixth & \begin{tabular}{l} 
Contains the altitude or amount traveled Up in selected \\
units.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that there is fully coordinated flight, i.e., there is no side force (wind axes) and sideslip is always zero.

The flat flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

\section*{See Also}

4th Order Point Mass (Longitudinal)
4th Order Point Mass Forces (Longitudinal)
6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass Forces (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)

\author{
Simple Variable Mass 6DOF (Euler Angles) \\ Simple Variable Mass 6DOF (Quaternion) \\ Simple Variable Mass 6DOF ECEF (Quaternion) \\ Simple Variable Mass 6DOF Wind (Quaternion) \\ Simple Variable Mass 6DOF Wind (Wind Angles)
}

\section*{6th Order Point Mass Forces (Coordinated Flight)}

Calculate forces used by sixth-order point mass in coordinated flight

\section*{Library}

Equations of Motion/Point Mass

\section*{Description}


The 6th Order Point Mass Forces (Coordinated Flight) block calculates the applied forces for a single point mass or multiple point masses.


The applied forces \(\left[F_{x} F_{y} F_{h}\right]^{\mathrm{T}}\) are in a system is defined by \(x\)-axis in the direction of vehicle velocity relative to air, \(z\)-axis is upwards and \(y\)-axis completes the right-handed
frame and are functions of lift \((L)\), drag \((D)\), thrust ( \(T\) ), weight ( \(W\) ), flight path angle ( \(\gamma\) ), angle of attack ( \(\alpha\) ), and bank angle ( \(\mu\) ).
\[
\begin{aligned}
& F_{x}=T \cos \alpha-D-W \sin \gamma \\
& F \gamma=(L+T \sin \alpha) \sin \mu \\
& F_{z}=(L+T \sin \alpha) \cos \mu-W \cos \gamma
\end{aligned}
\]

\section*{Dialog Box}


\section*{Inputs and Outputs}
\begin{tabular}{ll} 
Input \(\quad\) Dimension Type & Description \\
First & Contains the lift in units of force. \\
Second & Contains the drag in units of force. \\
Third & Contains the weight in units of force. \\
Fourth & Contains the thrust in units of force. \\
Fifth & Contains the flight path angle in radians. \\
Sixth & Contains the bank angle in radians. \\
Seventh & Contains the angle of attack in radians. \\
Output \(\quad\) Dimension Type & Description \\
First & \begin{tabular}{l} 
Contains the force in \(x\)-axis in units of force. \\
Second \\
Third
\end{tabular} \\
& \begin{tabular}{l} 
Contains the force in \(y\)-axis in units of force. \\
Contains the force in \(z\)-axis in units of force.
\end{tabular} \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that there is fully coordinated flight, i.e., there is no side force (wind axes) and sideslip is always zero.

The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

\section*{See Also}

4th Order Point Mass (Longitudinal)
4th Order Point Mass Forces (Longitudinal)
6th Order Point Mass (Coordinated Flight)

\section*{Acceleration Conversion}

Convert from acceleration units to desired acceleration units

\section*{Library}

Utilities/Unit Conversions

\section*{Description \(\sqrt{4 t_{s^{2}} \rightarrow m s^{2}}\)}

The Acceleration Conversion block computes the conversion factor from specified input acceleration units to specified output acceleration units and applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units selected from the Initial units and Final units lists.

\section*{Dialog Box}


\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline \(\mathrm{m} / \mathrm{s}^{2}\) & Meters per second squared \\
\hline \(\mathrm{ft} / \mathrm{s}^{2}\) & Feet per second squared \\
\hline \(\mathrm{km} / \mathrm{s}^{2}\) & Kilometers per second squared \\
\hline \(\mathrm{in} / \mathrm{s}^{2}\) & Inches per second squared \\
\hline \(\mathrm{km} / \mathrm{h}-\mathrm{s}\) & Kilometers per hour per second \\
\hline \(\mathrm{mph}-\mathrm{s}\) & Miles per hour per second \\
\hline \(\mathrm{G}^{\prime} \mathrm{s}\) & g-units \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
\hline First & & Contains the acceleration in initial acceleration units. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the acceleration in final acceleration units.
\end{tabular}

\section*{See Also}

Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion

\section*{Mass Conversion}

Pressure Conversion
Temperature Conversion
Velocity Conversion

\section*{Adjoint of \(3 \times 3\) Matrix}

Compute adjoint of matrix

\section*{Library}

Utilities/Math Operations

\section*{Description}

The Adjoint of \(3 \times 3\) Matrix block computes the adjoint matrix for the input matrix.
The input matrix has the form of
\[
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
\]

The adjoint of the matrix has the form of
\[
\operatorname{adj}(A)=\left[\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]
\]
where
\[
M_{i j}=(-1)^{i+j}
\]

\section*{Dialog Box}

Function Block Parameters: Adjoint of \(3 \times 3\) Matrix \(x\)
Adjoint of \(3 \times 3\) matrix (mask) (link)
Compute the adjoint matrix for the input matrix.

OK
Cancel Help Apply

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the acceleration in initial acceleration units. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the acceleration in final acceleration units.
\end{tabular}

\author{
See Also
}

Create 3x3 Matrix
Determinant of \(3 \times 3\) Matrix
Invert 3x3 Matrix

\section*{Aerodynamic Forces and Moments}

Compute aerodynamic forces and moments using aerodynamic coefficients, dynamic pressure, center of gravity, center of pressure, and velocity

\section*{Library}

Aerodynamics

\section*{Description}


The Aerodynamic Forces and Moments block computes the aerodynamic forces and moments about the center of gravity. By default, the inputs and outputs are represented in the body axes.

Let \(\alpha\) be the angle of attack and \(B\) the sideslip. The rotation from body to stability axes:
\[
C_{s \leftarrow b}=\left[\begin{array}{ccc}
\cos (\alpha) & 0 & \sin (\alpha) \\
0 & 1 & 0 \\
-\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right]
\]
can be combined with the rotation from stability to wind axes:
\[
C_{w \leftarrow s}=\left[\begin{array}{ccc}
\cos (\beta) & \sin (\beta) & 0 \\
-\sin (\beta) & \cos (\beta) & 0 \\
0 & 0 & 1
\end{array}\right]
\]
to yield the net rotation from body to wind axes:
\[
C_{w \leftarrow b}=\left[\begin{array}{ccc}
\cos (\alpha) \cos (\beta) & \sin (\beta) & \sin (\alpha) \cos (\beta) \\
-\cos (\alpha) \sin (\beta) & \cos (\beta) & -\sin (\alpha) \sin (\beta) \\
-\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right]
\]

Moment coefficients have the same notation in all systems. Force coefficients are given below. Note there are no specific symbols for stability-axes force components. However, the stability axes have two components that are unchanged from the other axes.
\[
\mathbf{F}_{A}^{w} \equiv\left[\begin{array}{c}
-D \\
-C \\
-L
\end{array}\right]=C_{w \leftarrow b} \cdot\left[\begin{array}{c}
X_{A} \\
Y_{A} \\
Z_{A}
\end{array}\right] \equiv C_{w \leftarrow b} \cdot \mathbf{F}_{A}^{b}
\]
\begin{tabular}{|l|l|l|l|}
\hline Components/Axes & \(\boldsymbol{x}\) & \(\boldsymbol{y}\) & \(\mathbf{z}\) \\
\hline Wind & \(C_{D}\) & \(C_{C}\) & \(\mathrm{C}_{\mathrm{L}}\) \\
\hline Stability & - & \(C_{Y}\) & \(C_{L}\) \\
\hline Body & \(C_{X}\) & \(C_{Y}\) & \(C_{Z}\left(-C_{N}\right)\) \\
\hline
\end{tabular}

Given these definitions, to account for the standard definitions of \(D, C, Y\) (where \(Y=-C\) ), and \(L\), force coefficients in the wind axes are multiplied by the negative identity \(\operatorname{diag}(-1\), \(-1,-1)\). Forces coefficients in the stability axes are multiplied by \(\operatorname{diag}(-1,1,-1) . C_{\mathrm{N}}\) and \(C_{\mathrm{X}}\) are, respectively, the normal and axial force coefficients ( \(C_{\mathrm{N}}=-C_{\mathrm{Z}}\) ).

\section*{Dialog Box}

\section*{Input Axes}

Specifies coordinate system for input coefficients: Body (default), Stability, or Wind.

\section*{Force Axes}

Specifies coordinate system for aerodynamic force: Body (default), Stability, or Wind.

\section*{Moment Axes}

Specifies coordinate system for aerodynamic moment: Body (default), Stability, or Wind.

\section*{Reference area}

Specifies the reference area for calculating aerodynamic forces and moments.

\section*{Reference span}

Specifies the reference span for calculating aerodynamic moments in \(x\)-axes and \(z\) axes.

\section*{Reference length}

Specifies the reference length for calculating aerodynamic moment in the \(y\)-axes.

\section*{Inputs and Outputs}

The first input consists of aerodynamic coefficients (in the chosen input axes) for forces and moments. These coefficients are ordered into a vector depending on the choice of axes:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Input Axes Input Vector} \\
\hline Body & \multicolumn{2}{|l|}{(axial force \(C_{\mathrm{x}}\), side force \(C_{\mathrm{y}}\), normal force \(C_{\mathrm{z}}\), rolling moment \(C_{\mathrm{l}}\), pitching moment \(C_{\mathrm{m}}\), yawing moment \(C_{\mathrm{n}}\) )} \\
\hline Stability & \multicolumn{2}{|l|}{(drag force \(C_{\mathrm{D}(B=0)}\), side force \(C_{\mathrm{y}}\), lift force \(C_{\mathrm{L}}\), rolling moment \(C_{\mathrm{l}}\), pitching moment \(C_{\mathrm{m}}\), yawing moment \(C_{\mathrm{n}}\) )} \\
\hline Wind & \multicolumn{2}{|l|}{(drag force \(C_{\mathrm{D}}\), cross-wind force \(C_{\mathrm{c}}\), lift force \(C_{\mathrm{L}}\), rolling moment \(C_{\mathrm{l}}\), pitching moment \(C_{\mathrm{m}}\), yawing moment \(C_{\mathrm{n}}\) )} \\
\hline Input & Dimension Type & Description \\
\hline Second & & Contains the dynamic pressure. \\
\hline Third & & Contains the center of gravity. \\
\hline Fourth & & Contains the center of pressure. This can also be taken as any general moment reference point as long as the rest of the model reflects the use of the moment reference point. \\
\hline Fifth & Three-element & Contains the velocity in the body axes. \\
\hline (For inputs & vector & \\
\hline or & & \\
\hline outputs & & \\
\hline in & & \\
\hline stability & & \\
\hline or wind & & \\
\hline axes) & & \\
\hline
\end{tabular}

\section*{Output Dimension Type Description}

First

Second

Contains the aerodynamic forces (in the chosen output axes) at the center of gravity in \(x\)-, \(y\)-, and \(z\)-axes.
Contains the aerodynamic moments (in the chosen output axes) at the center of gravity in \(x\)-, \(y\)-, and \(z\)-axes.

\section*{Assumptions and Limitations}

The default state of the block hides the \(V_{\mathrm{b}}\) input port and assumes that the transformation is body-body.

The center of gravity and the center of pressure are assumed to be in body axes.
While this block has the ability to output forces and/or moments in the stability axes, the blocks in the Equations of Motion library are currently designed to accept forces and moments in either the body or wind axes only.

\section*{Examples}

See Airframe in aeroblk_HL20 for an example of this block.

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992

\section*{See Also}

Digital DATCOM Forces and Moments
Dynamic Pressure
Estimate Center of Gravity
Moments About CG Due to Forces

\section*{Angle Conversion}

Convert from angle units to desired angle units

\section*{Library}

Utilities/Unit Conversions

\section*{Description \(\xrightarrow{\sqrt{\operatorname{deg} \rightarrow} \rightarrow \text { ad }}\)}

The Angle Conversion block computes the conversion factor from specified input angle units to specified output angle units and applies the conversion factor to the input signal.

The Angle Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}


\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline deg & Degrees \\
\hline rad & Radians \\
\hline rev & Revolutions \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
Input Dimension Type Description

First Contains the angle in initial angle units.

\section*{Output Dimension Type Description}

First Contains the angle in final angle units.

\section*{See Also}

Acceleration Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

\section*{Angular Acceleration Conversion}

Convert from angular acceleration units to desired angular acceleration units

\section*{Library}

Utilities/Unit Conversions
\[
\text { Description }{ }^{2 \operatorname{deg} / s^{2} \rightarrow \operatorname{rad} / s^{2}}
\]

The Angular Acceleration Conversion block computes the conversion factor from specified input angular acceleration units to specified output angular acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}


\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline \(\mathrm{deg} / \mathrm{s}^{2}\) & Degrees per second squared \\
\hline \(\mathrm{rad} / \mathrm{s}^{2}\) & Radians per second squared \\
\hline \(\mathrm{rpm} / \mathrm{s}\) & Revolutions per minute per second \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{|ll|}
\hline Input & Dimension Type \\
\hline First & \\
\hline & \begin{tabular}{l} 
Description \\
acceleration units.
\end{tabular} \\
\hline Output & Dimension Type \\
\hline First & \\
\hline
\end{tabular} \begin{tabular}{l} 
Description \\
Contains the angular acceleration in final angular \\
acceleration units.
\end{tabular}

\section*{See Also}

Acceleration Conversion
Angle Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion

4 Blocks - Alphabetical List

\section*{Temperature Conversion}

Velocity Conversion

\section*{Angular Velocity Conversion}

Convert from angular velocity units to desired angular velocity units

\section*{Library}

Utilities/Unit Conversions


The Angular Velocity Conversion block computes the conversion factor from specified input angular velocity units to specified output angular velocity units and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}


\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline \(\mathrm{deg} / \mathrm{s}\) & Degrees per second \\
\hline \(\mathrm{rad} / \mathrm{s}\) & Radians per second \\
\hline rpm & Revolutions per minute \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & \begin{tabular}{l} 
Description \\
First
\end{tabular} \\
\begin{tabular}{ll} 
Contains the angular acceleration in initial angular \\
acceleration units.
\end{tabular} \\
\hline Output & Dimension Type & \begin{tabular}{l} 
Description
\end{tabular} \\
\hline First & & \begin{tabular}{l} 
Contains the angular acceleration in final angular \\
acceleration units.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion

\section*{Temperature Conversion}

Velocity Conversion

\section*{Besselian Epoch to Julian Epoch}

Transform position and velocity components from discontinued Standard Besselian Epoch (B1950) to Standard Julian Epoch (J2000)

\section*{Library}

Utilities/Axes Transformations


The Besselian Epoch to Julian Epoch block transforms two 3-by-1 vectors of Besselian Epoch position ( \(\bar{r}_{B 1950}\) ), and Besselian Epoch velocity ( \(\bar{v}_{B 1950}\) ) into Julian Epoch position ( \(\bar{r}_{J 2000}\) ), and Julian Epoch velocity ( \(\bar{v}_{J 2000}\) ). The transformation is calculated using:
\[
\left[\begin{array}{l}
\bar{r}_{J 2000} \\
\bar{v}_{J 2000}
\end{array}\right]=\left[\begin{array}{ll}
\bar{M}_{r r} & \bar{M}_{v r} \\
\bar{M}_{r v} & \bar{M}_{v v}
\end{array}\right]\left[\begin{array}{l}
\bar{r}_{B 1950} \\
\bar{v}_{B 1950}
\end{array}\right]
\]
where \({ }^{\left(\bar{M}_{r r}, \bar{M}_{v r}, \bar{M}_{r v}, M_{v v}\right)}\) are defined as:
\[
\begin{aligned}
& \bar{M}_{r r}\left[\begin{array}{ccc}
0.9999256782 & -0.0111820611 & -0.0048579477 \\
0.0111820610 & 0.9999374784 & -0.0000271765 \\
0.0048579479 & -0.0000271474 & 0.9999881997
\end{array}\right] \\
& \bar{M}_{v r}=\left[\begin{array}{ccc}
0.00000242395018 & -0.00000002710663 & -0.00000001177656 \\
0.00000002710663 & 0.00000242397878 & -0.00000000006587 \\
0.00000001177656 & -0.00000000006582 & 0.00000242410173
\end{array}\right] \\
& \bar{M}_{r v}=\left[\begin{array}{ccc}
-0.000551 & -0.238565 & 0.435739 \\
0.238514 & -0.002667 & -0.008541 \\
-0.435623 & 0.012254 & 0.002117
\end{array}\right]
\end{aligned}
\]
\[
\bar{M}_{v v}=\left[\begin{array}{ccc}
0.99994704 & -0.01118251 & -0.00485767 \\
0.01118251 & 0.99995883 & -0.00002718 \\
0.00485767 & -0.00002714 & 1.00000956
\end{array}\right]
\]

\section*{Dialog Box}

Function Block Parameters: Besselian Epoch to Julian Epoch \(x^{x}\)
Besselian to Julian (mask) (link)
Transform position and velocity components from the discontinued Standard Besselian Epoch (B1950) to the Standard Julian Epoch (J2000).

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & 3-by-1 vector & \begin{tabular}{l} 
Contains the position in Standard Besselian Epoch \\
(B1950).
\end{tabular} \\
Second & 3 -by-1 vector & \begin{tabular}{l} 
Contains the velocity in Standard Besselian Epoch \\
(B1950).
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
Output & Dimension Type & Description \\
First & 3 -by-1 vector & Contains the position in Standard Julian Epoch (J2000). \\
Second & 3 -by-1 vector & Contains the velocity in Standard Julian Epoch (J2000).
\end{tabular}

\section*{Reference}
"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2A.

\section*{See Also}

Julian Epoch to Besselian Epoch

\section*{Calculate Range}

Calculate range between two crafts given their respective positions

\section*{Library}

GNC/Guidance

\section*{Description \\ }

The Calculate Range block computes the range between two crafts. The equation used for the range calculation is
\[
\text { Range }=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
\]

\section*{Dialog Box}


\section*{Inputs and Outputs}
\begin{tabular}{ll}
\hline Input \(\quad\) Dimension Type & Description \\
\hline First & Contains the \((\mathrm{x}, \mathrm{y}\) and z\()\) position of craft 1.
\end{tabular}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline Second & & Contains the (x, y and z\()\) position of craft 2. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the range from craft 2 and craft 1.
\end{tabular}

\section*{Limitation}

The calculated range is the magnitude of the distance, but not the direction. Therefore it is always positive or zero.

Craft positions are real values.

\section*{Centrifugal Effect Model}

Implement mathematical representation of centrifugal effect for planetary gravity

\section*{Library}

Environment/Gravity


The Centrifugal Effect Model block implements the mathematical representation of centrifugal effect for planetary gravity. The gravity centrifugal effect is the acceleration portion of centrifugal force effects due to the rotation of a planet. This block implements this representation using planetary rotation rates. You use centrifugal force values in rotating or non-inertial coordinate systems.

\section*{Dialog Box}


\section*{Planet model}

Specify the planetary model. From the list, select Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, or Custom. The block uses the rotation of the selected planet to implement the mathematical representation of the centrifugal effect.

Selecting Custom enables you to specify your own planetary model. This option enables the Planetary rotational rate (rad/sec) and Input planetary rotation rate parameters.

\section*{Planetary rotational rate (rad/sec)}

Specify the planetary rotational rate in radians per second.
If you want to specify the planetary rotational rate as an input to the block, see the Input planetary rotation rate parameter.

Selecting the Input planetary rotation rate check box disables the Planetary rotational rate ( \(\mathrm{rad} / \mathrm{sec}\) ) parameter.

\section*{Input planetary rotation rate}

Select this check box to enable a block input. You can then input a planetary rotation rate as a block input. When you select this check box, the block mask updates to display an input port for the rotation rate.

Selecting the Input planetary rotation rate check box disables the Planetary rotational rate ( \(\mathbf{r a d} / \mathrm{sec}\) ) parameter.

\section*{Inputs and Outputs}

This block accepts only scalar inputs \((\mathrm{m}=1)\).
\begin{tabular}{|lll} 
Input & \begin{tabular}{l} 
Dimension \\
Type
\end{tabular} & Description \\
First & \begin{tabular}{l} 
m-by-3 matrix Contains planet-centered planet-fixed coordinates from the \\
center of the planet. If Planet model has a value of Earth, \\
this matrix contains Earth-centered Earth-fixed (ECEF) \\
coordinates. The block does not use explicit units.
\end{tabular} \\
\end{tabular}
\begin{tabular}{lll} 
Output & \begin{tabular}{l} 
Dimension \\
Type
\end{tabular} & Description \\
First & \begin{tabular}{l}
m -by-3 array
\end{tabular} & \begin{tabular}{l} 
Contains gravity values in the \(x\)-axis, \(y\)-axis and \(z\)-axis \\
of the planet-centered planet-fixed coordinates in input \\
distance units per second squared.
\end{tabular} \\
\hline
\end{tabular}

\section*{References}

Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.

NIMA TR8350.2: Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems.

\section*{CIRA-86 Atmosphere Model}

Implement mathematical representation of 1986 CIRA atmosphere

\section*{Library}

Environment/Atmosphere


The CIRA-86 Atmosphere Model block implements the mathematical representation of the 1986 Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA). The block provides values for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The CIRA-86 Atmosphere Model block icon displays the input and output units selected from the Units list.

\section*{Dialog Box}

Function Block Parameters: CIRA-86 Atmosphere Model
CIRA-86 Model (mask) (link)
Calculate COSPAR International Reference Atmosphere 1986. This block implements the mathematical representation of the Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA) from 1986.

The CIRA 1986 model provides a mean climatology of temperature, zonal wind, and geopotential height or pressure with nearly pole-topole coverage ( 80 degrees \(\mathrm{S}-80\) degrees N ) for 0 to 120 kilometers, encompassing the troposphere, middle atmosphere, and lower thermosphere.


OK
Cancel
Help Apply

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Units & Height & Temperature & Speed of Sound & Air Pressure & Air Density \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Meters & Kelvin & Meters per second & Pascal & Kilograms per cubic meter \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Units & Height & Temperature & Speed of Sound & Air Pressure & Air Density \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in ft/s)
\end{tabular} & Feet & \begin{tabular}{l} 
Degrees \\
Rankine
\end{tabular} & \begin{tabular}{l} 
Feet per \\
second
\end{tabular} & \begin{tabular}{l} 
Pound-force per \\
square inch
\end{tabular} & \begin{tabular}{l} 
Slug per cubic \\
foot
\end{tabular} \\
\hline \begin{tabular}{l} 
English \\
(Velocity \\
in kts)
\end{tabular} & Feet & \begin{tabular}{l} 
Degrees \\
Rankine
\end{tabular} & Knots & \begin{tabular}{l} 
Pound-force per \\
square inch
\end{tabular} & \begin{tabular}{l} 
Slug per cubic \\
foot
\end{tabular} \\
\hline
\end{tabular}

\section*{Coordinate type}

Specify the representation of the coordinate type. The default is GPHeight.
- Pressure

Indicates pressure in pascal.
- GPHeight

Indicates geopotential height in meters.

\section*{Mean value type}

Specify mean value types. The default is Monthly.
- Monthly

Indicates monthly values. If you select Monthly, you must also set the Month parameter.
- Annual

Indicates annual values. Valid when Coordinate type has a value of Pressure.

\section*{Month}

Indicates the month in which the mean values are taken. From the list, select the desired month. This parameter applies only when Mean value type has a value of Monthly.

\section*{Action for out or range input}

Specify if out-of-range input invokes a warning, error, or no action.

\section*{Inputs and Outputs}
\begin{tabular}{lll} 
Input & Dimension Type & Description \\
First & Array & \begin{tabular}{l} 
Contains the latitude in degrees (limited to \\
\(+/-80\) degrees).
\end{tabular} \\
Second & Array & \begin{tabular}{l} 
Contains an \(m\) array of either:
\end{tabular} \\
& & Geopotential heights in selected length units \\
& & (Coordinate type is GPHeight) \\
& & \begin{tabular}{l} 
Pressures in selected pressure units \\
(Coordinate type is Pressure)
\end{tabular} \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Output & Dimension Type & Description \\
\hline First & Array & Contains mean temperature in selected units. \\
\hline Second & Array & \begin{tabular}{l}
Contains an \(m\) array of either: \\
- Pressures in selected pressure units (Coordinate type is GPHeight) \\
- Geopotential heights in selected length units (Coordinate type is Pressure)
\end{tabular} \\
\hline Third & Array & Contains mean zonal winds in selected units. \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

This function uses a corrected version of the CIRA data files provided by J. Barnett in July 1990 in ASCII format.

This function has the limitations of the CIRA 1986 model. The values for the CIRA 1986 model are limited to the regions of 80 degrees \(S\) to 80 degrees N on the Earth and geopotential heights of 0 to 120 kilometers. In each monthly mean data set, values at 80 degrees S for 101,300 pascal or 0 meters were omitted because these levels are within the Antarctic land mass. For zonal mean pressure in constant altitude coordinates, pressure data is not available below 20 kilometers. Therefore, this is the bottom level of the CIRA climatology.

\section*{Reference}

Fleming, E. L., Chandra, S., Shoeberl, M. R., Barnett, J. J., Monthly Mean Global Climatology of Temperature, Wind, Geopotential Height and Pressure for 0-120 km, NASA TM100697, February 1988
http://ccmc.gsfc.nasa.gov/modelweb/atmos/cospar1.html

\author{
See Also
}

COESA Atmosphere Model
ISA Atmosphere Model

\title{
COESA Atmosphere Model
}

Implement 1976 COESA lower atmosphere

\section*{Library}

Environment/Atmosphere


The COESA Atmosphere Model block implements the mathematical representation of the 1976 Committee on Extension to the Standard Atmosphere (COESA) United States standard lower atmospheric values for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard Atmosphere is identical with the Standard Atmosphere of the International Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units selected from the Units list.

\section*{Dialog Box}
Function Block Parameters: COESA Atmosphere Model
Atmosphere Model (mask) (link)
Calculate various atmosphere models including 1976 COESA-extended U.S.
Standard Atmosphere, MIL-HDBK-310, and MIL-STD-210C. Given geopotential
altitude, calculate absolute temperature, pressure and density using standard
interpolation formulas.
The COESA model extrapolates temperature linearly and pressure/density
logarithmically beyond the range
\[
0 \text { <= altitude <= 84852 meters (geopotential) }
\]
The MIL specifications are not extrapolated beyond their defined altitudes which are
typically
Depending on the given information either density or pressure is calculated using a
perfect gas relationship.
The unit system selected applies to both input and outputs.
Parameters
Units: Metric (MKS)
Specification: 1976 COESA-extended U.S. Standard Atmosphere
Action for out of range input: Warning
OK

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Units & Height & Temperature & Speed of Sound & Air Pressure & Air Density \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Meters & Kelvin & Meters per second & Pascal & Kilograms per cubic meter \\
\hline English (Velocity in ft/s) & Feet & Degrees Rankine & Feet per second & Pound-force per square inch & Slug per cubic foot \\
\hline English (Velocity in kts) & Feet & Degrees Rankine & Knots & Pound-force per square inch & Slug per cubic foot \\
\hline
\end{tabular}

\section*{Specification}

Specify the atmosphere model type from one of the following atmosphere models. The default is 1976 COESA-extended U.S. Standard Atmosphere.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the block reference for more information.

MIL - STD-210C
This selection is linked to the Non-Standard Day 210C block. See the block reference for more information.

\section*{Action for out of range input}

Specify if out-of-range input invokes a warning, error, or no action.

\section*{Inputs and Outputs}
\begin{tabular}{ll}
\hline Input \(\quad\) Dimension Type & Description \\
\hline First & Contains the geopotential height. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Output & Dimension Type \\
\hline First & Description \\
Second & Contains the temperature. \\
Third & Contains the speed of sound. \\
Fourth & Contains the air pressure. \\
& Contains the air density.
\end{tabular}

\section*{Assumptions and Limitations}

Below the geopotential altitude of 0 m ( 0 feet) and above the geopotential altitude of \(84,852 \mathrm{~m}\) (approximately 278,386 feet), temperature values are extrapolated linearly and pressure values are extrapolated logarithmically. Density and speed of sound are calculated using a perfect gas relationship.

\section*{Examples}

See the aeroblk_calibrated model, the aeroblk_indicated model, and the airframe in aeroblk_HL20 for examples of this block.

\section*{Reference}
U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

\section*{See Also}

CIRA-86 Atmosphere Model, ISA Atmosphere Model
Non-Standard Day 210C
Non-Standard Day 310

\section*{Create 3x3 Matrix}

Create 3 -by- 3 matrix from nine input values

\section*{Library}

Utilities/Math Operations


The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values where each input corresponds to an element of the matrix.

The output matrix has the form of
\[
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
\]

\section*{Dialog Box}
```

目 Function Block Parameters: Create 3x3 Matrix
Create 3\times3 Matrix (mask) (link)
Create a 3-by-3 matrix from nine input values. Each input
corresponds to an element of the matrix.
For example, the input labeled A21 is the entry in the second row and first column of the matrix.

```

\section*{Inputs and Outputs}
\begin{tabular}{ll} 
Input & Dimension Type \\
First & Description \\
Second & Contains the first row and first column of the matrix. \\
Third & Contains the first row and second column of the matrix. \\
Fourth & Contains the first row and third column of the matrix. \\
Fifth & \begin{tabular}{l} 
Contains the second row and first column of the matrix. \\
Contains the second row and second column of the matrix.
\end{tabular} \\
Sixth & \begin{tabular}{l} 
Contains the second row and third column of the matrix. \\
Seventh
\end{tabular} \\
\begin{tabular}{l} 
Contains the third row and first column of the matrix. \\
Cight \\
Ninth
\end{tabular} & \begin{tabular}{l} 
Contains the third row and second column of the matrix. \\
Contains the third row and third column of the matrix.
\end{tabular} \\
Output & Dimension Type \\
First & Description \\
\hline
\end{tabular}

\section*{See Also}

Adjoint of 3x3 Matrix

Determinant of 3x3 Matrix
Invert 3x3 Matrix
Symmetric Inertia Tensor

\section*{Crossover Pilot Model}

Represent crossover pilot model

\section*{Library}

Pilot Models


The Crossover Pilot Model block represents the pilot model described in Mathematical Models of Human Pilot Behavior. (For more information, see [1]). This pilot model is a single input, single output (SISO) model that represents some aspects of human behavior when controlling aircraft. When modeling human pilot models, use this block for more accuracy than that provided by the Tustin Pilot Model block. This block is also less accurate than the Precision Pilot Model block.

The Crossover Model takes into account the combined dynamics of the human pilot and the aircraft, using the following form around the crossover frequency:
\[
Y_{p} Y_{c}=\frac{\omega_{c} e^{-\tau s}}{s} .
\]

In this equation:
\begin{tabular}{|l|l|}
\hline Variable & Description \\
\hline\(Y_{p}\) & Pilot transfer function. \\
\hline\(Y_{c}\) & Aircraft transfer function. \\
\hline\(\omega_{c}\) & Crossover frequency. \\
\hline\(\tau\) & \begin{tabular}{l} 
Transport delay time caused by the pilot \\
neuromuscular system.
\end{tabular} \\
\hline
\end{tabular}

If the dynamics of the aircraft \(\left(Y_{c}\right)\) change, \(Y_{p}\) changes correspondingly. From the options provided in the Type of control parameter, specify the dynamics of the aircraft. The preceding table lists the possible types of control that you can select for the aircraft.

Note: This block is valid only around the crossover frequency. It is not valid for discrete inputs such as a step.

This block has non-linear behavior. If you want to linearize the block (for example, with one of the Simulink linmod functions), you might need to change the Pade approximation order. The Crossover Pilot Model block implementation incorporates the Simulink Transport Delay block with the Pade order (for linearization) parameter set to 2 by default. To change this value, use the set_param function, for example:
```

set_param(gcb,'pade','3')

```

\section*{Dialog Box}


\section*{Type of control}

From the list, select one of the following options to specify the type of dynamics control that you want the pilot to have over for the aircraft.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Option \\
(Controlled \\
Element \\
Transfer \\
Function)
\end{tabular} & Transfer Function of Controlled Element ( \(Y_{\mathrm{C}}\) ) & Transfer Function of Pilot ( \(Y_{p}\) ) & \(Y_{c} Y_{p}\) & Notes \\
\hline Proportional & \(K_{c}\) & \(\frac{K_{p} e^{-\tau s}}{s}\) & \[
\frac{K_{c} K_{p} e^{-\tau s}}{s}
\] & \\
\hline Rate or velocity & \(\frac{K_{c}}{s}\) & \(K_{p} e^{-\tau s}\) & \[
\frac{K_{c} K_{p} e^{-\tau s}}{s}
\] & \\
\hline Spiral divergence & \[
\frac{K_{c}}{T_{I} s-1}
\] & \(K_{p} e^{-\tau s}\) & \[
\frac{K_{c} K_{p} e^{-\tau s}}{\left(T_{I} s-1\right)}
\] & \\
\hline Second order - Short period & \(\frac{K_{c} \omega_{n}{ }^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}\) & \(\frac{K_{p} e^{-\tau s}}{T_{I} s+1}\) & \[
\begin{aligned}
& \frac{K_{c} \omega_{n}{ }^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \times \\
& \frac{K_{p} e^{-\tau s}}{T_{I} s+1}
\end{aligned}
\] & Short period, with \(\omega_{n}>1 / \tau\) \\
\hline \begin{tabular}{l}
Accelera- \\
tion (*)
\end{tabular} & \(\frac{K_{c}}{s^{2}}\) & \(K_{p} s e^{-\tau s}\) & \(\frac{K_{c} K_{p} e^{-\tau s}}{s}\) & \\
\hline ```
Roll
attitude
(*)
``` & \(\frac{K_{c}}{s\left(T_{I} s+1\right)}\) & \(K_{p}\left(T_{L} s+1\right) e^{-\tau s}\) & \(\frac{K_{c} K_{p} e^{-\tau s}}{s}\) & With
\[
\mathrm{T}_{\mathrm{L}} \approx \mathrm{~T}_{\mathrm{I}}
\] \\
\hline Unstable short period(*) & \[
\frac{K_{c}}{\left(T_{I 1} s+1\right)\left(T_{I 2} s-1\right)}
\] & \(K_{p}\left(T_{L} s+1\right) e^{-\tau s}\) & \(\frac{K_{c} K_{p} e^{-\tau s}}{\left(T_{I 2} s-1\right)}\) & With
\[
\mathrm{T}_{\mathrm{L}} \approx \mathrm{~T}_{\mathrm{I} 1}
\] \\
\hline Second order Phugoid(*) & \[
\frac{K_{c} \omega_{n}{ }^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
\] & \(K_{p}\left(T_{L} s+1\right) e^{-\tau s}\) & \[
\frac{K_{c} K_{p} \omega_{n}^{2} e^{-\tau s}}{s}
\] & Phugoid, with
\[
\begin{aligned}
& \omega_{n} \ll 1 / \tau, \\
& 1 / T_{L} \approx \zeta \omega_{n}
\end{aligned}
\] \\
\hline
\end{tabular}
* Indicates that the pilot model includes a Derivative block, which produces a numerical derivative. For this reason, do not send discontinuous (such as a step) or noisy input to the Crossover Pilot Model block. Such inputs can cause large outputs that might render the system unstable.
\begin{tabular}{|ll|}
\hline Variable & Description \\
\hline \(\mathrm{K}_{\mathrm{c}}\) & Aircraft gain. \\
\hline \(\mathrm{K}_{\mathrm{p}}\) & Pilot gain. \\
\hline\(\tau\) & Pilot time delay. \\
\hline \(\mathrm{T}_{\mathrm{I}}\) & Lag constant. \\
\hline \(\mathrm{T}_{\mathrm{L}}\) & Lead constant. \\
\hline\(\zeta\) & Damping ratio for the aircraft. \\
\hline\(\omega_{\mathrm{n}}\) & Natural frequency of the aircraft. \\
\hline
\end{tabular}

\section*{Calculated value}

From the list, select one of the following options to specify which value the block is to calculate:
- Crossover frequency - The block calculates the crossover frequency value. Selecting this option disables the Crossover frequency (rad/s) parameter.
- Pilot gain - The block calculates the pilot gain value. Selecting this option disables the Pilot gain parameter.

\section*{Controlled element gain}

Specifies the gain of the aircraft controlled dynamics.

\section*{Pilot gain}

Specifies the pilot gain.

\section*{Crossover frequency (rad/s)}

Specifies a crossover frequency value, rad/s. This value ranges from 1 to \(10 \mathrm{rad} / \mathrm{s}\).

\section*{Pilot time delay(s)}

Specifies the total pilot time delay, in seconds. This value typically ranges from 0.1 s to 0.2 s .

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & 1-by-1 & \begin{tabular}{l}
Contains the command for the signal that the pilot \\
model controls. \\
Contains the signal that the pilot model controls.
\end{tabular} \\
Second & 1 -by-1 & Description \\
Output & Dimension Type & \begin{tabular}{l}
Contains the command for the aircraft.
\end{tabular} \\
First & 1 -by-1 &
\end{tabular}

\section*{References}
[1] McRuer, D. T., Krendel, E., Mathematical Models of Human Pilot Behavior. Advisory Group on Aerospace Research and Development AGARDograph 180, Jan. 1974.

\author{
See Also \\ Precision Pilot Model \| Tustin Pilot Model
}

\section*{Custom Variable Mass 3DOF (Body Axes)}

Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to body axes

\section*{Library}

Equations of Motion/3DOF

The Custom Variable Mass 3DOF (Body Axes) block considers the rotation in the vertical plane of a body-fixed coordinate frame about a flat Earth reference frame.

The equations of motion are
\[
\begin{aligned}
& \dot{u}=\frac{F_{x}}{m}-\frac{\dot{m} U r e_{b}}{m}-q w-g \sin \theta \\
& \text { Vre }_{b}=[U r e \quad W r e]_{b} \\
& \dot{w}=\frac{F_{z}}{m}-\frac{\dot{m} W r e_{b}}{m}+q u+g \cos \theta \\
& \dot{q}=\frac{M-\dot{I}_{y y} q}{I_{y y}} \\
& \dot{\theta}=q
\end{aligned}
\]
where the applied forces are assumed to act at the center of gravity of the body. \(U r e_{\mathrm{b}}\) and \(W r e_{\mathrm{b}}\) are the relative velocities of the mass flow (\(\dot{m}\)) being added to or ejected from the body in body-fixed axes.

\section*{Dialog Box}
\begin{tabular}{l}
Function Block Parameters: Custom Variable Mass 3DOF (Body Axes) \\
3DOF EoM (mask) (link) \\
Integrate the three-degrees-of-freedom equations of motion to \\
determine body position, velocity, attitude, and related values. \\
Parameters \\
Units: Metric (MKS) \\
Mass type: Custom Variable \\
Initial velocity: \\
100 \\
Initial body attitude: \\
\hline 0 \\
Initial incidence: \\
\hline 0 \\
Initial body rotation rate: \\
\hline 0 \\
Initial position (x z): \\
[0 0] \\
Include mass flow relative velocity source: External \\
\hline OK \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Newton & \begin{tabular}{l}
Newton \\
meter
\end{tabular} & \begin{tabular}{l}
Meters per second \\
squared
\end{tabular} & \begin{tabular}{l}
Meters \\
per \\
second
\end{tabular} & Meters & Kilogram & \begin{tabular}{l}
Kilogram \\
meter \\
squared
\end{tabular} \\
\hline \begin{tabular}{l}
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & \begin{tabular}{l}
Foot \\
pound
\end{tabular} & \begin{tabular}{l}
Feet per second \\
squared
\end{tabular} & \begin{tabular}{l}
Feet per \\
second
\end{tabular} & Feet & Slug & \begin{tabular}{l}
Slug foot \\
squared
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
English \\
(Velocity \\
in kts)
\end{tabular} & Pound & \begin{tabular}{l}
Foot \\
pound
\end{tabular} & \begin{tabular}{l}
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug & \begin{tabular}{l}
Slug foot \\
squared
\end{tabular} \\
\hline
\end{tabular}

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & Mass and inertia vary linearly as a function of mass rate. \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Custom Variable selection conforms to the previously described equations of motion.

\section*{Initial velocity}

A scalar value for the initial velocity of the body, \(\left(V_{0}\right)\).

\section*{Initial body attitude}

A scalar value for the initial pitch attitude of the body, \(\left(\theta_{0}\right)\).

\section*{Initial incidence}

A scalar value for the initial angle between the velocity vector and the body, \(\left(\alpha_{0}\right)\).

\section*{Initial body rotation rate}

A scalar value for the initial body rotation rate, \(\left(q_{0}\right)\).

\section*{Initial position (\(\mathbf{x}, \mathbf{z}\))}

A two-element vector containing the initial location of the body in the flat Earth reference frame.

\section*{Gravity Source}

Specify source of gravity:
\begin{tabular}{|l|l|}
\hline External & Variable gravity input to block \\
\hline Internal & \begin{tabular}{l}
Constant gravity specified in Acceleration due to \\
gravity
\end{tabular} \\
\hline
\end{tabular}

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0 . This parameter appears if you set Gravity source to Internal.
Include mass flow relative velocity
Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & Scalar & Contains the force acting along the body \(x\)-axis, \(\left(F_{x}\right)\). \\
\hline Second & Scalar & Contains the force acting along the body \(z\)-axis, \(\left(F_{z}\right)\). \\
\hline Third & Scalar & Contains the applied pitch moment, (\(M\)). \\
\hline \begin{tabular}{l}
Fourth \\
(Optional
\end{tabular} & Vector & Contains the rate of change of mass, (\(\dot{m}\)) (positive if accreted, negative if ablated). \\
\hline Fifth & Scalar & Contains the mass, (m). \\
\hline Sixth & Scalar & Contains the rate of change of inertia tensor matrix, (\(\dot{I}_{y y}\)) . \\
\hline Seventh & Scalar & Contains the inertia tensor matrix, (\(I_{y y}\)). \\
\hline Eighth (Optional & Scalar & Contains the gravity in the selected units. \\
\hline Ninth (Optional & Two-element vector & Contains one or more relative velocities at which the mass is accreted to or ablated from the body in body axes. \\
\hline Output & Dimension Type & Description \\
\hline First & Scalar & Contains the pitch attitude, in radians (\(\theta\)). \\
\hline Second & Scalar & Contains the pitch angular rate, in radians per second (\(q\)). \\
\hline Third & Scalar & Contains the pitch angular acceleration, in radians per second squared (\(\dot{q}\)). \\
\hline Fourth & Two-element vector & Contains the location of the body, in the flat Earth reference frame, (\(X e, Z e\)). \\
\hline Fifth & Two-element vector & Contains the velocity of the body resolved into the bodyfixed coordinate frame, \((u, w)\). \\
\hline
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & Description \\
Sixth & \begin{tabular}{l}
Two-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the acceleration of the body resolved into the \\
body-fixed coordinate frame, \((A x, A z)\).
\end{tabular}
\end{tabular}

\section*{See Also}

3DOF (Body Axes)
Incidence \& Airspeed
Simple Variable Mass 3DOF (Body Axes)

\section*{Custom Variable Mass 3DOF (Wind Axes)}

Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes

\section*{Library}

Equations of Motion/3DOF

The Custom Variable Mass 3DOF (Wind Axes) block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat Earth reference frame.

The equations of motion are
\[
\begin{aligned}
& \dot{V}=\frac{F_{x_{\text {wind } d}}}{m}-\frac{\dot{m} V r e_{x_{\text {wind }}}}{m}-g \sin \gamma \\
& \dot{\alpha}=\frac{F_{z_{w i n d}}}{m V}+q+\frac{g}{V} \cos \gamma-\frac{\dot{m} V r e_{z_{\text {wind }}}}{m V} \\
& \dot{q}=\dot{\theta}=\frac{M_{y_{\text {body }}}-\dot{I}_{y y} q}{I_{y y}} \\
& \dot{\gamma}=q-\dot{\alpha}
\end{aligned}
\]
where the applied forces are assumed to act at the center of gravity of the body. Vre \(\mathrm{w}_{\mathrm{w}}\) is the relative velocity in the wind axes at which the mass flow (\(\dot{m}\)) is ejected or added to the body in wind axes.

\section*{Dialog Box}
```

I Function Block Parameters: Custom Variable Mass 3DOF (Wind Axes) }
3DOF Wind EoM (mask) (link)
Integrate the three-degrees-of-freedom equations of motion in wind
axes to determine position, velocity, attitude, and related values.
Parameters
Units: Metric (MKS)
Mass type: Custom Variable -
Initial airspeed:
100
Initial flight path angle:
0
Initial incidence:
0
Initial body rotation rate:
0
Initial position (x z):
[00]
Gravity source:
External
\square Include mass flow relative velocity

```

\section*{Units}

Specifies the input and output units:
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Units } & \text { Forces } & \text { Moment } & \text { Acceleration } & \text { Velocity } & \text { Position } & \text { Mass } \\ \hline \begin{array}{l}\text { Metric } \\ \text { (MKS) }\end{array} & \text { Newton } & \begin{array}{l}\text { Newton } \\ \text { meter }\end{array} & \begin{array}{l}\text { Meters per } \\ \text { second squared }\end{array} & \begin{array}{l}\text { Meters } \\ \text { per } \\ \text { second }\end{array} & \text { Meters } & \text { Kilogram }\end{array} \begin{array}{l}\text { Kilogram } \\ \text { meter } \\ \text { squared }\end{array}\right]\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass \\
\hline \begin{tabular}{l}
English \\
(Velocity \\
in ft/s)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l}
Feet per second \\
squared
\end{tabular} & \begin{tabular}{l}
Feet per \\
second
\end{tabular} & Feet & Slug \\
\hline \begin{tabular}{l}
English \\
(Velocity \\
in kts)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l}
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug \\
squared
\end{tabular}\(\left|\begin{array}{l}\text { Slug foot } \\
\text { squared }\end{array}\right|\)

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l}
Mass and inertia vary linearly as a function of \\
mass rate.
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Custom Variable selection conforms to the previously described equations of motion.

\section*{Initial airspeed}

A scalar value for the initial velocity of the body, \(\left(V_{0}\right)\).

\section*{Initial flight path angle}

A scalar value for the initial pitch attitude of the body, \(\left(\gamma_{0}\right)\).

\section*{Initial incidence}

A scalar value for the initial angle between the velocity vector and the body, \(\left(a_{0}\right)\).

\section*{Initial body rotation rate}

A scalar value for the initial body rotation rate, \(\left(q_{0}\right)\).

\section*{Initial position (\(\mathbf{x}, \mathrm{z}\))}

A two-element vector containing the initial location of the body in the flat Earth reference frame.

\section*{Gravity Source}

Specify source of gravity:
\begin{tabular}{|l|l|}
\hline External & Variable gravity input to block \\
\hline
\end{tabular}
```

Internal Constant gravity specified in Acceleration due
to gravity

```

\section*{Acceleration due to gravity}

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0 . This parameter appears if you set Gravity source to Internal.

\section*{Include mass flow relative velocity}

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the force acting along the wind \(x\)-axis, \(\left(F_{x}\right)\). \\
\hline Second & & Contains the force acting along the wind \(z\)-axis, \(\left(F_{z}\right)\). \\
\hline Third & & Contains the applied pitch moment in body axes, \((M)\). \\
\hline Fourth (Optional) & Vector & Contains one or more rates of change of mass, (\(\dot{m}\)) (positive if accreted, negative if ablated). \\
\hline Fifth & & Contains the mass, (m). \\
\hline Sixth & & Contains the rate of change of inertia tensor matrix, (\(\dot{I}_{y y}\)). \\
\hline Seventh & & Contains the inertia tensor matrix, (\(I_{y y}\)). \\
\hline \begin{tabular}{l}
Eighth \\
(Optional)
\end{tabular} & & Contains the gravity in the selected units. \\
\hline Ninth (Optional) & Two-element vector & Contains one or more relative velocities at which the mass is accreted to or ablated from the body in wind axes. \\
\hline Output Dim & ension Type & scription \\
\hline First & & ntains the flight path angle, in radians (\(\gamma\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Output & Dimension Type & Description \\
\hline Second & & Contains the pitch angular rate, in radians per second (\(\omega_{y}\)). \\
\hline Third & & Contains the pitch angular acceleration, in radians per second squared (\(d \omega_{y} / d t\)). \\
\hline Fourth & Two-element vector & Contains the location of the body, in the flat Earth reference frame, (\(X e, Z e\)). \\
\hline Fifth & Two-element vector & Contains the velocity of the body resolved into the windfixed coordinate frame, \((V, 0)\). \\
\hline Sixth & Two-element vector & Contains the acceleration of the body resolved into the body-fixed coordinate frame, \((A x, A z)\). \\
\hline Seventh & Scalar & Contains the angle of attack, (a). \\
\hline
\end{tabular}

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

3DOF (Body Axes)
3DOF (Wind Axes)
4th Order Point Mass (Longitudinal)
Custom Variable Mass 3DOF (Body Axes)
Simple Variable Mass 3DOF (Body Axes)
Simple Variable Mass 3DOF (Wind Axes)

\section*{Custom Variable Mass 6DOF (Euler Angles)}

Implement Euler angle representation of six-degrees-of-freedom equations of motion of custom variable mass

\section*{Library}

Equations of Motion/6DOF

The Custom Variable Mass 6DOF (Euler Angles) block considers the rotation of a bodyfixed coordinate frame (\(X_{b}, Y_{b}, Z_{b}\)) about a flat Earth reference frame (\(X_{e}, Y_{e}, Z_{e}\)). The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame
The translational motion of the body-fixed coordinate frame is given below, where the applied forces \(\left[F_{x} F_{y} F_{z}\right]^{T}\) are in the body-fixed frame. \(V r e_{b}\) is the relative velocity in the body axes at which the mass flow (\(\dot{m}\)) is ejected or added to the body-fixed axes.
\[
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega} \times \bar{V}_{b}\right)+\dot{m} \bar{V} r e_{b} \\
& \bar{V}_{b}=\left[\begin{array}{c}
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right], \bar{\omega}=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]
\end{aligned}
\]

The rotational dynamics of the body-fixed frame are given below, where the applied moments are \([L M N]^{\mathrm{T}}\), and the inertia tensor \(I\) is with respect to the origin O .
\[
\begin{aligned}
& \bar{M}_{B}=\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}+\bar{\omega} \times(I \bar{\omega})+\dot{I} \bar{\omega} \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right] \\
& \dot{I}=\left[\begin{array}{ccc}
\dot{I}_{x x} & -\dot{I}_{x y} & -\dot{I}_{x z} \\
-\dot{I}_{y x} & \dot{I}_{y y} & -\dot{I}_{y z} \\
-\dot{I}_{z x} & -\dot{I}_{z y} & \dot{I}_{z z}
\end{array}\right]
\end{aligned}
\]

The relationship between the body-fixed angular velocity vector, \([p q r]^{\mathrm{T}}\), and the rate of change of the Euler angles, \([\dot{\phi} \dot{\theta} \dot{\psi}]^{\mathrm{T}}\), can be determined by resolving the Euler rates into the body-fixed coordinate frame.
\[
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{c}
\dot{\phi} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{c}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right]=J^{-1}\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
\]

Inverting \(J\) then gives the required relationship to determine the Euler rate vector.
\[
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \phi \tan \theta) & (\cos \phi \tan \theta) \\
0 & \cos \phi & -\sin \phi \\
0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
\]

\section*{Dialog Box}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{- Function Block Parameters: Custom Variable Mass 6DOF (Euler Ang... \(x^{(1)}\)} \\
\hline \multicolumn{4}{|l|}{6DOF EoM (Body Axis) (mask) (link)} \\
\hline \multicolumn{4}{|l|}{Integrate the six-degrees-of-freedom equations of motion in body axis.} \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline \multicolumn{4}{|l|}{Units: Metric (MKS) -} \\
\hline \multicolumn{4}{|l|}{Mass type: Custom Variable} \\
\hline \multicolumn{4}{|l|}{Representation: Euler Angles} \\
\hline \multicolumn{4}{|l|}{Initial position in inertial axes [\(\mathrm{Xe}, \mathrm{Ye}, \mathrm{Ze}\)]:} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Initial velocity in body axes [\(\mathrm{U}, \mathrm{v}, \mathrm{w}\)]:} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Initial Euler orientation [roll, pitch, yaw]:} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Initial body rotation rates [\(\mathrm{p}, \mathrm{q}, \mathrm{r}]\) :} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{\(\square\) Include mass flow relative velocity} \\
\hline OK & Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline Metric (MKS) & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline English (Velocity in ft/s) & Pound & Foot pound & Feet per second squared & Feet per second & Feet & Slug & Slug foot squared \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass
\end{tabular} Inertia \begin{tabular}{|l}
\hline \begin{tabular}{l}
English \\
(Velocity \\
in kts)
\end{tabular} \\
Pound \\
\hline
\end{tabular}

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l}
Mass and inertia vary linearly as a function of mass \\
rate.
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Custom Variable selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Euler Angles & Use Euler angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Euler Angles selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial velocity in body axes}

The three-element vector for the initial velocity in the body-fixed coordinate frame.

\section*{Initial Euler rotation}

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

\section*{Initial body rotation rates}

The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Include mass flow relative velocity}

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Vector & Contains the three applied forces. \\
Second & Vector & \begin{tabular}{l}
Contains the three applied moments. \\
Contains one or more rates of change of mass (positive if \\
(Optional)
\end{tabular} \\
Vector & accreted, negative if ablated). \\
Fourth & Scalar & \begin{tabular}{l}
Contains the mass.
\end{tabular} \\
Fifth & 3-by-3 matrix & \begin{tabular}{l}
Contains the rate of change of inertia tensor matrix. \\
Sixth
\end{tabular} \\
3-by-3 matrix & \begin{tabular}{l}
Contains the inertia tensor matrix.
\end{tabular} \\
\begin{tabular}{l}
Seventh \\
(Optional)
\end{tabular} & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains one or more relative velocities at which the \\
mass is accreted to or ablated from the body in body- \\
fixed axes.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & \multicolumn{1}{c}{ Description } \\
First & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the velocity in the flat Earth reference frame.
\end{tabular} \\
Second & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \multicolumn{1}{l}{ Contains the position in the flat Earth reference frame. } \\
Third & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the Euler rotation angles [roll, pitch, yaw], in \\
radians. \\
Contains the coordinate transformation from flat Earth \\
axes to body-fixed axes.
\end{tabular} \\
Fifth & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the velocity in the body-fixed frame.
\end{tabular} \\
Sixth matrix & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the angular rates in body-fixed axes, in radians \\
per second.
\end{tabular} \\
Seventh & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the angular accelerations in body-fixed axes, in \\
radians per second squared.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
\hline Output & Dimension Type & Description \\
Eight & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & Contains the accelerations in body-fixed axes.
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body.

\section*{Reference}

Mangiacasale, L., Flight Mechanics of a \(\mu\)-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)

Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{Custom Variable Mass 6DOF (Quaternion)}

Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass with respect to body axes

\section*{Library}

Equations of Motion/6DOF

For a description of the coordinate system and the translational dynamics, see the block description for the Custom Variable Mass 6DOF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below. The gain \(K\) drives the norm of the quaternion state vector to 1.0 should \(\varepsilon\) become nonzero. You must choose the value of this gain with care, because a large value improves the decay rate of the error in the norm, but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one element of the quaternion vector is spread equally among all the elements, potentially increasing the error in the state vector.
\[
\begin{aligned}
& {\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=1 / 2\left[\begin{array}{cccc}
0 & -p & -q & -r \\
p & 0 & r & -q \\
q & -r & 0 & p \\
r & q & -p & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]+K \varepsilon\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]} \\
& \varepsilon=1-\left(q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}\right) .
\end{aligned}
\]

\section*{Dialog Box}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{. Function Block Parameters: Custom Variable Mass 6DOF (Quaterni... \(x^{(1)}\)} \\
\hline \multicolumn{4}{|l|}{6DOF EoM (Body Axis) (mask) (link)} \\
\hline \multicolumn{4}{|l|}{Integrate the six-degrees-of-freedom equations of motion in body axis.} \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline \multicolumn{4}{|l|}{Units: Metric (MKS) -} \\
\hline \multicolumn{4}{|l|}{Mass type: Custom Variable} \\
\hline \multicolumn{4}{|l|}{Representation: Quaternion} \\
\hline \multicolumn{4}{|l|}{Initial position in inertial axes [\(\mathrm{Xe}, \mathrm{Ye}, \mathrm{Ze}\)]:} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Initial velocity in body axes [\(\mathrm{U}, \mathrm{v}, \mathrm{w}\)]:} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Initial Euler orientation [roll, pitch, yaw]:} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Initial body rotation rates [\(\mathrm{p}, \mathrm{q}, \mathrm{r}]\) :} \\
\hline \multicolumn{4}{|l|}{\(\left[\begin{array}{lll}0 & 0\end{array}\right]\)} \\
\hline \multicolumn{4}{|l|}{Gain for quaternion normalization:} \\
\hline \multicolumn{4}{|l|}{1.0} \\
\hline \multicolumn{4}{|l|}{\(\square\) Include mass flow relative velocity} \\
\hline OK & Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline English (Velocity in ft/s) & Pound & Foot pound & Feet per second squared & Feet per second & Feet & Slug & Slug foot squared \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass \\
\hline \begin{tabular}{l}
English \\
(Velocity \\
in kts)
\end{tabular} & Pound & Foot pound & \begin{tabular}{l}
Feet per second \\
squared
\end{tabular} & Knots & Feet & Slug \\
\hline
\end{tabular}

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & Mass and inertia vary linearly as a function of mass rate. \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Custom Variable selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Euler Angles & Use Euler angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Quaternion selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.
Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed coordinate frame.

\section*{Initial Euler rotation}

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

\section*{Initial body rotation rates}

The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Gain for quaternion normalization}

The gain to maintain the norm of the quaternion vector equal to 1.0 .

\section*{Include mass flow relative velocity}

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & Vector & Contains the three applied forces. \\
Second & Vector & Contains the three applied moments. \\
Third & Vector & \begin{tabular}{l}
Contains one or more rates of change of mass \\
(positive if accreted, negative if ablated).
\end{tabular} \\
Fourth & Scalar & Contains the mass. \\
Fifth & 3-by-3 matrix & Contains rate of change of inertia tensor matrix. \\
Sixth & 3-by-3 matrix & \begin{tabular}{l}
Contains the inertia tensor matrix. \\
\begin{tabular}{l}
Seventh \\
(Optional)
\end{tabular} \\
\begin{tabular}{l}
Three-element \\
vector
\end{tabular}
\end{tabular} \begin{tabular}{l}
Contains one or more relative velocities at which the \\
mass is accreted to or ablated from the body in body- \\
fixed axes.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
Output & \begin{tabular}{l}
Dimension Type
\end{tabular} & \multicolumn{1}{l}{ Description } \\
First & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the velocity in the flat Earth reference frame.
\end{tabular} \\
Second & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the position in the flat Earth reference frame.
\end{tabular} \\
Third & \begin{tabular}{l}
Three-element \\
vector \\
3 -by-3 matrix
\end{tabular} & \begin{tabular}{l}
Contains the Euler rotation angles [roll, pitch, yaw], in \\
radians. \\
Contains the coordinate transformation from flat Earth \\
axes to body-fixed axes.
\end{tabular} \\
Fifth & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the velocity in the body-fixed frame.
\end{tabular} \\
Sixth & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the angular rates in body-fixed axes, in radians \\
per second.
\end{tabular} \\
Seventh & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & \begin{tabular}{l}
Contains the angular accelerations in body-fixed axes, in \\
radians per second squared.
\end{tabular}
\end{tabular}
\begin{tabular}{|lll|}
\hline Output & Dimension Type & Description \\
\hline Eighth & \begin{tabular}{l}
Three-element \\
vector
\end{tabular} & Contains the accelerations in body-fixed axes. \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body.

\section*{Reference}

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)

Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{Custom Variable Mass 6DOF ECEF (Quaternion)}

Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass in Earth-centered Earth-fixed (ECEF) coordinates

\section*{Library}

Equations of Motion/6DOF

The Custom Variable Mass 6DOF ECEF (Quaternion) block considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame (\(X_{\text {ECEF }}, Y_{E C E F}, Z_{E C E F}\)) about an Earth-centered inertial (ECI) reference frame (\(X_{E C I}, Y_{E C I}, Z_{E C I}\)). The origin of the ECEF coordinate frame is the center of the Earth, additionally the body of interest is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to consider only the constant rotation of the ellipsoid Earth (\(\omega_{e}\)) including an initial celestial longitude \(\left(L_{G}(0)\right)\). This excellent approximation allows the forces due to the Earth's complex motion relative to the "fixed stars" to be neglected.

The translational motion of the ECEF coordinate frame is given below, where the applied forces \(\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}\) are in the body frame. Vre \(_{\mathrm{b}}\) is the relative velocity in the wind axes at which the mass flow (\(\dot{m}\)) is ejected or added to the body in body-fixed axes.
\[
\begin{aligned}
\bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]= & m\left(\dot{\bar{V}}_{b}+\bar{\omega}_{b} \times \bar{V}_{b}+D C M_{b f} \bar{\omega}_{e} \times \bar{V}_{b}+D C M_{b f}\left(\bar{\omega}_{e} \times\left(\bar{\omega}_{e} \times \bar{X}_{f}\right)\right)\right) \\
& +\dot{m}\left(\bar{V} r e_{b}+D C M_{b f}\left(\bar{\omega}_{e} \times \bar{X}_{f}\right)\right)
\end{aligned}
\]
where the change of position in ECEF \(\dot{\bar{x}}_{f}\) is calculated by
\[
\dot{\bar{x}}_{f}=D C M_{f b} \bar{V}_{b}
\]
and the velocity of the body with respect to ECEF frame, expressed in body frame \(\left(\bar{V}_{b}\right)\), angular rates of the body with respect to ECI frame, expressed in body frame \(\left(\bar{\omega}_{b}\right)\). Earth
rotation rate \(\left(\bar{\omega}_{e}\right)\), and relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body frame \(\left(\bar{\omega}_{\text {rel }}\right)\) are defined as
\[
\begin{aligned}
& \bar{V}_{b}=\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right], \bar{\omega}_{r e l}=\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right], \bar{\omega}_{e}=\left[\begin{array}{c}
0 \\
0 \\
\omega_{e}
\end{array}\right], \bar{\omega}_{b}=\bar{\omega}_{r e l}+D C M_{b f} \bar{\omega}_{e}+D C M_{b e} \bar{\omega}_{n e d} \\
& \bar{\omega}_{\text {ned }}=\left[\begin{array}{c}
\dot{l} \cos \mu \\
-\dot{\mu} \\
-\dot{l} \sin \mu
\end{array}\right]=\left[\begin{array}{c}
V_{E} /(N+h) \\
-V_{N} /(M+h) \\
V_{E} \bullet \tan \mu /(N+h)
\end{array}\right]
\end{aligned}
\]

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied moments are \([L M N]^{\mathrm{T}}\), and the inertia tensor \(I\) is with respect to the origin 0 .
\[
\begin{aligned}
& \bar{M}_{b}=\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=\bar{I} \dot{\bar{\omega}}_{b}+\bar{\omega}_{b} \times\left(\bar{I} \bar{\omega}_{b}\right)+\dot{I} \bar{\omega}_{b} \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
\]

The rate of change of the inertia tensor is defined by the following equation.
\[
\dot{I}=\left[\begin{array}{ccc}
\dot{I}_{x x} & -\dot{I}_{x y} & -\dot{I}_{x z} \\
-\dot{I}_{y x} & \dot{I}_{y y} & -\dot{I}_{y z} \\
-\dot{I}_{z x} & -\dot{I}_{z y} & \dot{I}_{z z}
\end{array}\right]
\]

The integration of the rate of change of the quaternion vector is given below.
\[
\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=-1 / 2\left[\begin{array}{cccc}
0 & \omega_{b}(1) & \omega_{b}(2) & \omega_{b}(3) \\
-\omega_{b}(1) & 0 & -\omega_{b}(3) & \omega_{b}(2) \\
-\omega_{b}(2) & \omega_{b}(3) & 0 & -\omega_{b}(1) \\
-\omega_{b}(3) & -\omega_{b}(2) & \omega_{b}(1) & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
\]

\section*{Dialog Box}

Function Block Parameters: Custom Variable Mass 6DOF ECEF (Qua... \(x\) 6DOF EoM (ECEF) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion using a quaternion representation for the orientation of the body in space.
\begin{tabular}{|l|}
\hline Main Planet \\
Units: Metric (MKS) \\
Mass type: Custom Variable \\
Initial position in geodetic latitude, longitude, altitude [mu,l,h]: \\
\hline ipos_g \\
Initial velocity in body axes [U,v,w]: \\
\hline ivel_b \\
Initial Euler orientation [roll, pitch, yaw]: \\
\hline ieuler \\
Initial body rotation rates [p,q,r]: \\
irates_b \\
Include mass flow relative velocity \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline English (Velocity in ft/s) & Pound & Foot pound & Feet per second squared & Feet per second & Feet & Slug & Slug foot squared \\
\hline English (Velocity in kts) & Pound & Foot pound & Feet per second squared & Knots & Feet & Slug & Slug foot squared \\
\hline
\end{tabular}

Mass type

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & \begin{tabular}{l}
Mass is constant throughout the simulation \\
(see 6DOF ECEF (Quaternion)).
\end{tabular} \\
\hline Simple Variable & \begin{tabular}{l}
Mass and inertia vary linearly as a function \\
of mass rate (see Simple Variable Mass 6DOF \\
ECEF (Quaternion)).
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Simple Variable selection conforms to the previously described equations of motion.

\section*{Initial position in geodetic latitude, longitude and altitude}

The three-element vector for the initial location of the body in the geodetic reference frame. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

\section*{Initial velocity in body-axis}

The three-element vector containing the initial velocity of the body with respect to ECEF frame, expressed in body frame.

\section*{Initial Euler orientation}

The three-element vector containing the initial Euler rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and north-eastdown (NED) coordinate systems.

\section*{Initial body rotation rates}

The three-element vector for the initial angular rates of the body with respect to NED frame, expressed in body frame, in radians per second.

\section*{Include mass flow relative velocity}

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Planet model}

Specifies the planet model to use, Custom or Earth (WGS84).

\section*{Equatorial radius of planet}

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for ECEF position. This option is only available when Planet model is set to Custom.

\section*{Flattening}

Specifies the flattening of the planet. This option is only available when Planet model is set to Custom.

\section*{Rotational rate}

Specifies the scalar rotational rate of the planet in rad/s. This option is only available when Planet model is set to Custom.

\section*{Celestial longitude of Greenwich source}

Specifies the source of Greenwich meridian's initial celestial longitude:
\begin{tabular}{|l|l|}
\hline Internal & Use celestial longitude value from mask dialog. \\
\hline External & Use external input for celestial longitude value. \\
\hline
\end{tabular}

\section*{Celestial longitude of Greenwich}

The initial angle between Greenwich meridian and the \(x\)-axis of the ECI frame.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & Vector & Contains the three applied forces in body-fixed axes. \\
\hline Second & Vector & Contains the three applied moments in bodyfixed axes. \\
\hline Third (Optional) & Vector & Contains one or more rates of change of mass (positive if accreted, negative if ablated). \\
\hline Fourth & Scalar & Contains the mass. \\
\hline Sixth & 3-by-3 matrix & Applies to the inertia tensor matrix. \\
\hline Seventh (Optional) & 1-by-1-by-m array & Contains one or more relative velocities at which the mass is accreted to or ablated from the body in body-fixed axes. \(m\) is three times the size of the third input vector. \\
\hline Output & Dimension Type & Description \\
\hline First & Three-element vector & Contains the velocity of the body with respect to ECEF frame, expressed in ECEF frame. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Output & Dimension Type & Description \\
\hline Second & Three-element vector & Contains the position in the ECEF reference frame. \\
\hline Third & Three-element vector & Contains the position in geodetic latitude, longitude and altitude, in degrees, degrees and selected units of length respectively. \\
\hline Fourth & Three-element vector & Contains the body rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and NED coordinate systems. \\
\hline Fifth & 3-by-3 matrix & Applies to the coordinate transformation from ECI axes to body-fixed axes. \\
\hline Sixth & 3-by-3 matrix & Applies to the coordinate transformation from NED axes to body-fixed axes. \\
\hline Seventh & 3-by-3 matrix & Applies to the coordinate transformation from ECEF axes to NED axes. \\
\hline Eighth & Three-element vector & Contains the velocity of the body with respect to ECEF frame, expressed in body frame. \\
\hline Ninth & Three-element vector & Contains the relative angular rates of the body with respect to NED frame, expressed in body frame, in radians per second. \\
\hline Tenth & Three-element vector & Contains the angular rates of the body with respect to ECI frame, expressed in body frame, in radians per second. \\
\hline Eleventh & Three-element vector & Contains the angular accelerations of the body with respect to ECI frame, expressed in body frame, in radians per second squared. \\
\hline Twelfth & Three-element vector & Contains the accelerations in body-fixed axes. \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

This implementation assumes that the applied forces are acting at the center of gravity of the body.

This implementation generates a geodetic latitude that lies between \(\pm 90\) degrees, and longitude that lies between \(\pm 180\) degrees. Additionally, the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the \(x\)-axis intersects the Greenwich meridian and the equator, the \(z\)-axis is the mean spin axis of the planet, positive to the north, and the \(y\)-axis completes the right-handed system.

The implementation of the ECI coordinate system assumes that the origin is at the center of the planet, the \(x\)-axis is the continuation of the line from the center of the Earth through the center of the Sun toward the vernal equinox, the \(z\)-axis points in the direction of the mean equatorial plane's north pole, positive to the north, and the \(y\)-axis completes the right-handed system.

\section*{References}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second Edition, John Wiley \& Sons, New York, 2003.

McFarland, Richard E., A Standard Kinematic Model for Flight simulation at NASAAmes, NASA CR-2497.
"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2A.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{Custom Variable Mass 6DOF Wind (Quaternion)}

Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes

\section*{Library}

Equations of Motion/6DOF

The Custom Variable Mass 6DOF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame (\(X_{w}, Y_{w}, Z_{w}\)) about an flat Earth reference frame (\(X_{e}, Y_{e}, Z_{e}\)). The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces \(\left[F_{x}, F_{y}, F_{z}\right]^{\mathrm{T}}\) are in the wind-fixed frame. Vre \({ }_{\mathrm{w}}\) is the relative velocity in the wind axes at which the mass flow (\(\dot{m}\)) is ejected or added to the body.
\[
\begin{aligned}
& \bar{F}_{w}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{w}+\bar{\omega}_{w} \times \bar{V}_{w}\right)+\dot{m} \bar{V} r e_{w} \\
& \bar{V}_{w}=\left[\begin{array}{l}
V \\
0 \\
0
\end{array}\right], \bar{\omega}_{w}=\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right], \bar{w}_{b}=\left[\begin{array}{c}
p_{b} \\
q_{b} \\
r_{b}
\end{array}\right]
\end{aligned}
\]

The rotational dynamics of the body-fixed frame are given below, where the applied moments are \([L M N]^{\mathrm{T}}\), and the inertia tensor \(I\) is with respect to the origin O. Inertia tensor \(I\) is much easier to define in body-fixed frame.
\[
\begin{aligned}
& \bar{M}_{b}=\left[\begin{array}{l}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}_{b}+\bar{\omega}_{b} \times\left(I \bar{\omega}_{b}\right)+\dot{I} \bar{\omega}_{b} \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
\]

The integration of the rate of change of the quaternion vector is given below.
\[
\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cccc}
0 & p & q & r \\
-p & 0 & -r & q \\
-q & r & 0 & -p \\
-r & -q & p & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
\]

\section*{Dialog Box}
```

    复 Function Block Parameters: Custom Variable Mass 6DOF Wind (Qu... }
    6DOF EoM (Wind Axis) (mask) (link)
    Integrate the six-degrees-of-freedom equations of motion in wind
    axis.
    Parameters
    Units: Metric (MKS)
    Mass type: Custom Variable
    Representation: Quaternion
    Initial position in inertial axes [Xe,Ye,Ze]:
    [0000]
    Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:
    [0000]
    Initial wind orientation [bank angle,flight path angle,heading angle]:
    [0000]
    Initial body rotation rates [p,q,r]:
    [000]
    Include mass flow relative velocity
    ```


\section*{Units}

Specifies the input and output units:
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Units } & \text { Forces } & \text { Moment } & \text { Acceleration } & \text { Velocity } & \text { Position } & \text { Mass } \\ \hline \begin{array}{l}\text { Metric } \\ \text { (MKS) }\end{array} & \text { Newton } & \begin{array}{l}\text { Newton } \\ \text { meter }\end{array} & \begin{array}{l}\text { Meters per } \\ \text { second squared }\end{array} & \begin{array}{l}\text { Meters } \\ \text { per } \\ \text { second }\end{array} & \text { Meters } & \text { Kilogram }\end{array} \begin{array}{l}\text { Kilogram } \\ \text { meter } \\ \text { squared }\end{array}\right]\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass
\end{tabular} Inertia \begin{tabular}{|l}
\hline \begin{tabular}{l}
English \\
(Velocity \\
in kts)
\end{tabular} \\
Pound \\
\hline
\end{tabular}

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l}
Mass and inertia vary linearly as a function of mass \\
rate.
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Custom Variable selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Wind Angles & Use wind angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Quaternion selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial airspeed, sideslip angle, and angle of attack}

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

\section*{Initial wind orientation}

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.
Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Include mass flow relative velocity}

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & Vector & Contains the three applied forces in wind-fixed axes. \\
\hline Second & Vector & Contains the three applied moments in bodyfixed axes. \\
\hline Third (Optional) & Vector & Contains one or more rates of change of mass, positive if accreted, negative if ablated. \\
\hline Fourth & Scalar & Contains the mass of the body \\
\hline Fifth & 3-by-3 matrix & Applies to the rate of change of inertia tensor matrix in body-fixed axes. \\
\hline Sixth & 3-by-3 matrix & Applies to the inertia tensor matrix in bodyfixed axes. \\
\hline \begin{tabular}{l}
Seventh \\
(Optional)
\end{tabular} & Three-element vector & Contains one or more relative velocities at which the mass is accreted to or ablated from the body in wind axes. \\
\hline Output & Dimension Type & Description \\
\hline First & Three-element vector & Contains the velocity in the flat Earth reference frame \\
\hline Second & Three-element vector & Contains the position in the flat Earth reference frame. \\
\hline Third & Three-element vector & Contains the wind rotation angles [bank, flight path, heading], in radians. \\
\hline Fourth & 3-by-3 matrix & Applies to the coordinate transformation from flat Earth axes to wind-fixed axes. \\
\hline Fifth & Three-element vector & Contains to the velocity in the wind-fixed frame. \\
\hline Sixth & Two-element vector & Contains the angle of attack and sideslip angle, in radians. \\
\hline
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & Description \\
Seventh & Two-element vector & \begin{tabular}{l}
Contains the rate of change of angle of attack \\
and rate of change of sideslip angle, in radians \\
per second.
\end{tabular} \\
Eighth & Three-element vector & \begin{tabular}{l}
Contains the angular rates in body-fixed axes, \\
in radians per second.
\end{tabular} \\
Ninth & Three-element vector & \begin{tabular}{l}
Contains the angular accelerations in body- \\
fixed axes, in radians per second squared. \\
Tenth
\end{tabular} \\
Three-element vector & Contains the accelerations in body-fixed axes.
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body.

\section*{References}

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)

\author{
Custom Variable Mass 6DOF (Euler Angles) \\ Custom Variable Mass 6DOF (Quaternion) \\ Custom Variable Mass 6DOF ECEF (Quaternion) \\ Custom Variable Mass 6DOF Wind (Wind Angles) \\ Simple Variable Mass 6DOF (Euler Angles) \\ Simple Variable Mass 6DOF (Quaternion) \\ Simple Variable Mass 6DOF ECEF (Quaternion) \\ Simple Variable Mass 6DOF Wind (Quaternion) \\ Simple Variable Mass 6DOF Wind (Wind Angles)
}

\section*{Custom Variable Mass 6DOF Wind (Wind Angles)}

Implement wind angle representation of six-degrees-of-freedom equations of motion of custom variable mass

\section*{Library}

Equations of Motion/6DOF

For a description of the coordinate system employed and the translational dynamics, see the block description for the Custom Variable Mass 6DOF Wind (Quaternion) block.

The relationship between the wind angles, \([\mu \gamma x]^{\mathrm{T}}\), can be determined by resolving the wind rates into the wind-fixed coordinate frame.
\[
\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{l}
\dot{\mu} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\gamma} \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{lll}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\chi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{l}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]
\]

Inverting \(J\) then gives the required relationship to determine the wind rate vector.
\[
\left[\begin{array}{c}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]=J\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{ll}
1(\sin \mu \tan \gamma)(\cos \mu \tan \gamma) \\
0 \cos \mu & -\sin \mu \\
0 \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma}
\end{array}\right]\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]
\]

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.
\[
\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
\]

Using this relationship in the wind rate vector equations, gives the relationship between the wind rate vector and the body-fixed angular rates.
\[
\left[\begin{array}{c}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]=J\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{ll}
1(\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\
0 \cos \mu & -\sin \mu \\
0 \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma}
\end{array}\right] D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
\]

\section*{Dialog Box}
```

者 Function Block Parameters: Custom Variable Mass 6DOF Wind (Win...
6DOF EoM (Wind Axis) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion in wind
axis.
Parameters
Units: Metric (MKS)
Mass type: Custom Variable
Representation: Wind Angles
Initial position in inertial axes [Xe,Ye,Ze]:
[0000]
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:
[0000]
Initial wind orientation [bank angle,flight path angle,heading angle]:
[$$
\begin{array}{lll}{0}&{0}\end{array}
$$]
Initial body rotation rates [p,q,r]:
[000]
Include mass flow relative velocity

```

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass & Inertia \\
\hline \begin{tabular}{l}
Metric \\
(MKS)
\end{tabular} & Newton & Newton meter & Meters per second squared & Meters per second & Meters & Kilogram & Kilogram meter squared \\
\hline English (Velocity in ft/s) & Pound & Foot pound & Feet per second squared & Feet per second & Feet & Slug & Slug foot squared \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Units & Forces & Moment & Acceleration & Velocity & Position & Mass
\end{tabular} Inertia \begin{tabular}{|l}
\hline \begin{tabular}{l}
English \\
(Velocity \\
in kts)
\end{tabular}
\end{tabular}

\section*{Mass Type}

Select the type of mass to use:
\begin{tabular}{|l|l|}
\hline Fixed & Mass is constant throughout the simulation. \\
\hline Simple Variable & \begin{tabular}{l}
Mass and inertia vary linearly as a function of mass \\
rate.
\end{tabular} \\
\hline Custom Variable & Mass and inertia variations are customizable. \\
\hline
\end{tabular}

The Custom Variable selection conforms to the previously described equations of motion.

\section*{Representation}

Select the representation to use:
\begin{tabular}{|l|l|}
\hline Wind Angles & Use wind angles within equations of motion. \\
\hline Quaternion & Use quaternions within equations of motion. \\
\hline
\end{tabular}

The Wind Angles selection conforms to the previously described equations of motion.

\section*{Initial position in inertial axes}

The three-element vector for the initial location of the body in the flat Earth reference frame.

\section*{Initial airspeed, sideslip angle, and angle of attack}

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

\section*{Initial wind orientation}

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.
Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians per second.

\section*{Include mass flow relative velocity}

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & \multicolumn{1}{c}{ Description } \\
First & Vector & \(\begin{array}{l}\text { Contains the three applied forces in wind-fixed } \\
\text { axes. }\end{array}\) \\
Second & Vector & \(\begin{array}{l}\text { Contains the three applied moments in body- } \\
\text { fixed axes (+/-). }\end{array}\) \\
Third & Vector & \(\begin{array}{l}\text { Contains one or more rates of change of mass } \\
\text { (Optional) }\end{array}\) \\
\(\begin{array}{ll}\text { (positive if accreted, negative if ablated). }\end{array}\) \\
Fifth & Scalar & 3-by-3 matrix
\end{tabular}\(\left.\quad \begin{array}{l}\text { Contains the mass. } \\
\text { Applies to the rate of change of inertia tensor } \\
\text { matrix in body-fixed axes. }\end{array}\right]\)\begin{tabular}{l}
Applies to the inertia tensor matrix in body- \\
fixed axes.
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l}
Contains the velocity in the flat Earth reference \\
frame.
\end{tabular} \\
Second & Three-element vector & \begin{tabular}{l}
Contains the position in the flat Earth reference \\
frame.
\end{tabular} \\
Third & Three-element vector & \begin{tabular}{l}
Contains the wind rotation angles [bank, flight \\
path, heading], in radians.
\end{tabular} \\
Fourth & 3-by-3 matrix & \begin{tabular}{l}
Applies to the coordinate transformation from \\
flat Earth axes to wind-fixed axes.
\end{tabular} \\
Fifth & Three-element vector & \begin{tabular}{l}
Contains the velocity in the wind-fixed frame.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & Description \\
Sixth & Two-element vector & \begin{tabular}{l}
Contains the angle of attack and sideslip angle, \\
in radians.
\end{tabular} \\
Seventh & Two-element vector & \begin{tabular}{l}
Contains the rate of change of angle of attack \\
and rate of change of sideslip angle, in radians \\
per second.
\end{tabular} \\
Eighth & Three-element vector & \begin{tabular}{l}
Contains the angular rates in body-fixed axes, \\
in radians per second.
\end{tabular} \\
Ninth & Three-element vector & \begin{tabular}{l}
Contains the angular accelerations in body- \\
fixed axes, in radians per second squared.
\end{tabular} \\
Tenth & Three-element vector & \begin{tabular}{l}
Contains the accelerations in body-fixed axes.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The block assumes that the applied forces are acting at the center of gravity of the body.

\section*{References}

Mangiacasale, L., Flight Mechanics of a \(\mu\)-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)6th Order Point Mass (Coordinated Flight)Custom Variable Mass 6DOF (Euler Angles)Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

\section*{Density Conversion}

Convert from density units to desired density units

\section*{Library}

Utilities/Unit Conversions

\section*{Description \(\sqrt{16 m / t^{3} \rightarrow \mathrm{~kg} / \mathrm{m}^{3}}\).}

The Density Conversion block computes the conversion factor from specified input density units to specified output density units and applies the conversion factor to the input signal.

The Density Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}

\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline \(\mathrm{lbm} / \mathrm{ft}^{3}\) & Pound mass per cubic foot \\
\hline \(\mathrm{kg} / \mathrm{m}^{3}\) & Kilograms per cubic meter \\
\hline \(\mathrm{slug} / \mathrm{ft}^{3}\) & Slugs per cubic foot \\
\hline \(\mathrm{lbm} / \mathrm{in}^{3}\) & Pound mass per cubic inch \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the density, in initial density units. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the density, in final density units. \\
\hline
\end{tabular}

\section*{See Also}

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion

\section*{Temperature Conversion}

Velocity Conversion

\section*{Determinant of \(3 \times 3\) Matrix}

Compute determinant of matrix

\section*{Library}

Utilities/Math Operations

\section*{Description \\ \(\operatorname{det}(A)\)
\((3 \times 3)\)}

The Determinant of 3 x 3 Matrix block computes the determinant for the input matrix.
The input matrix has the form of
\[
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
\]

The determinant of the matrix has the form of
\[
\operatorname{det}(A)=A_{11}\left(A_{22} A_{33}-A_{23} A_{32}\right)-A_{12}\left(A_{21} A_{33}-A_{23} A_{31}\right)+A_{13}\left(A_{21} A_{32}-A_{22} A_{31}\right)
\]

\section*{Dialog Box}
Function Block Parameters: Determinant of \(3 \times 3\) Matrix
Determinant of \(3 \times 3\) Matrix (mask) (link)
Compute the determinant of \(3 \times 3\) matrix.
OK \(\quad\) Cancel

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & 3-by-3 matrix & \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the determinant of input matrix. \\
\hline
\end{tabular}

\section*{See Also}

Adjoint of \(3 \times 3\) Matrix
Create 3x3 Matrix
Invert 3x3 Matrix

\section*{Digital DATCOM Forces and Moments}

Compute aerodynamic forces and moments using Digital DATCOM static and dynamic stability derivatives

\section*{Library}

Aerodynamics

The Digital DATCOM Forces and Moments block computes the aerodynamic forces and moments about the center of gravity using aerodynamic coefficients from Digital DATCOM.

Algorithms for calculating forces and moments build up the overall aerodynamic forces and moments (\(\boldsymbol{F}\) and \(\boldsymbol{M}\)) from data contained in the Digital DATCOM structure parameter:
\(\boldsymbol{F}=\boldsymbol{F}_{\text {static }}+\boldsymbol{F}_{\text {dyn }}\)
\(\boldsymbol{M}=\boldsymbol{M}_{\text {static }}+\boldsymbol{M}_{\mathrm{dyn}}\)
\(\boldsymbol{F}_{\text {static }}\) and \(\boldsymbol{M}_{\text {static }}\) are the static contribution, and \(\boldsymbol{F}_{\text {dyn }}\) and \(\boldsymbol{M}_{\text {dyn }}\) the dynamic contribution, to the aerodynamic coefficients. If the dynamic characteristics are not contained in the Digital DATCOM structure parameter, their contribution is set to zero.

\section*{Static Stability Characteristics}

Static stability characteristics include the following.
\begin{tabular}{ll}
Coefficient & Meaning \\
\(C_{\mathrm{D}}\) & \begin{tabular}{l}
Matrix of drag coefficients. These coefficients are defined positive for \\
an aft-acting load.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Coefficient & \begin{tabular}{l}
Meaning \\
\(C_{\mathrm{L}}\)
\end{tabular} \\
\(C_{\mathrm{m}}\) & \begin{tabular}{l}
Matrix of lift coefficients. These coefficients are defined positive for an \\
up-acting load. \\
Matrix of pitching-moment coefficients. These coefficients are defined \\
positive for a nose-up rotation. \\
\(C_{\mathrm{YB}}\)
\end{tabular} \\
\(C_{\mathrm{n} B}\) & \begin{tabular}{l}
Matrix of derivatives of side-force coefficients with respect to sideslip \\
angle
\end{tabular} \\
\(C_{18}\) & \begin{tabular}{l}
Matrix of derivatives of yawing-moment coefficients with respect to \\
sideslip angle
\end{tabular} \\
\(T_{\text {Mese }}\)
\end{tabular}

These are the dynamic contributions to the aerodynamic coefficients in stability axes.
\[
\begin{aligned}
& C_{\mathrm{D} \text { dyn }}=0 \\
& C_{\mathrm{y} \text { dyn }}=C_{\mathrm{yp}} p\left(b_{\mathrm{ref}} / 2 V\right) \\
& C_{\mathrm{L} \text { dyn }}=C_{\mathrm{L} \dot{a}} \dot{a}\left(c_{\mathrm{bar}} / 2 V\right) \\
& C_{\mathrm{l} \text { dyn }}=\left(C_{\mathrm{lp}} p+C_{\mathrm{lq}} q+C_{\mathrm{lr}} r\right)\left(b_{\mathrm{ref}} / 2 V\right) \\
& C_{\mathrm{m} \text { dyn }}=\left(C_{\mathrm{mq}} q+C_{\mathrm{m} \dot{a}} \dot{a}\right)\left(c_{\mathrm{bar}} / 2 V\right) \\
& C_{\mathrm{n} \text { dyn }}=\left(C_{\mathrm{np}} p+C_{\mathrm{nr}} r\right)\left(b_{\mathrm{ref}} / 2 V\right)
\end{aligned}
\]

\section*{Dialog Box}

Function Block Parameters: Digital DATCOM Forces and Moments Digital DATCOM Forces and Moments (mask) (link)
Compute the aerodynamic forces and moments using Digital DATCOM static and dynamic stability derivatives.

Parameters
Units: Metric (MKS)
Digital DATCOM structure:
factstruct \(\{1\}\)
Force axes: Body
Interpolation method: Linear
Extrapolation method: Linear
Process out of range input: Linear Extrapolation
Action for out of range input: None

OK Cancel Help Apply

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|ll|l|l|l|l|}
\hline Units & Force & Moment & Length & Velocity & Pressure \\
\hline Metric (MKS) & Newton & \begin{tabular}{l}
Newton- \\
meter
\end{tabular} & Meters & \begin{tabular}{l}
Meters per \\
second
\end{tabular} & Pascal \\
\hline \begin{tabular}{l}
English \\
(Velocity in \\
ft/s)
\end{tabular} & Pound & Foot-pound & Feet & Feet per second & \begin{tabular}{l}
Pound per square \\
inch
\end{tabular} \\
\hline \begin{tabular}{l}
English \\
(Velocity in \\
kts)
\end{tabular} & Pound & Foot-pound & Feet & Knots & \begin{tabular}{l}
Pound per square \\
inch
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital DATCOM structure}

Specifies the MATLAB structure containing the digital DATCOM data. This structure is generated by the Aerospace Toolbox function datcomimport. The Digital DATCOM Forces and Moments block supports only Digital DATCOM, which is the 1976 version of DATCOM.

\section*{Force axes}

Specifies coordinate system for aerodynamic force: Body or Wind.

\section*{Interpolation method}

None (flat) or Linear
Extrapolation method
None (clip) or Linear

\section*{Process out of range input}

Specifies how to handle out-of-range input: Linear Extrapolation or Clip to Range.

\section*{Action for out of range input}

Specifies if out-of-range input invokes a warning, an error, or no action.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
First & 3-by-3 matrix & Contains the angle of attack. \\
Second & & Contains the sideslip angle, in radians.
\end{tabular}
\begin{tabular}{ll}
Input & Dimension Type \\
Third & Description \\
Fourth & \begin{tabular}{l}
Contains the Mach number. \\
Fifth
\end{tabular} \\
Contains the altitude, in selected length units. \\
Sixth & \begin{tabular}{l}
Contains the dynamic pressure, in selected \\
pressure units.
\end{tabular} \\
Seventh & \begin{tabular}{l}
Contains the velocity, selected velocity units \\
and selected force axes.
\end{tabular} \\
(Optional) & \begin{tabular}{l}
Contains the angle of attack rate, in radians per \\
second. Appears when DAMP Control Card is \\
used in input to Digital DATCOM.
\end{tabular} \\
Eight & \begin{tabular}{l}
Contains the body angular rates, in radians per \\
(Optional)
\end{tabular} \\
\begin{tabular}{l}
second. Appears when DAMP Control Card is \\
used in input to Digital DATCOM.
\end{tabular} \\
Ninth & \begin{tabular}{l}
Contains the ground height, in select units of \\
length. Appears when GRNDEF Namelist is
\end{tabular} \\
Tenth & \begin{tabular}{l}
used in input to Digital DATCOM.
\end{tabular} \\
(Optional) & \begin{tabular}{l}
Contains the control surface deflections, \\
radians. Appears when ASYFLP or SYMFLP
\end{tabular} \\
& \begin{tabular}{l}
and GRNDEF namelists are used in input to
\end{tabular} \\
Digital DATCOM.
\end{tabular}
\begin{tabular}{ll}
Output Dimension Type & \begin{tabular}{l}
Description \\
First \\
gravity in the aerodynamic forces at the coordinate system: \\
grady of \\
\(F_{\mathrm{y}}\), and \(\left.F_{\mathrm{z}}\right)\), or Wind \(\left(F_{\mathrm{D}}, F_{\mathrm{y}}\right.\), and \(\left.F_{\mathrm{L}}\right)\).
\end{tabular} \\
Second & \begin{tabular}{l}
Contains the aerodynamic moments at the \\
center of gravity in body coordinates \(\left(M_{\mathrm{x}}, M_{\mathrm{y}}\right.\), \\
and \(\left.M_{z}\right)\).
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The operational limitations of Digital DATCOM apply to the data contained in the Digital DATCOM structure parameter. For more information on Digital DATCOM limitations, see Section 2.4.5 of reference [1].

The Digital DATCOM structure parameters alpha, mach, alt, grndht, and delta must be strictly monotonically increasing to be used with the Digital DATCOM Forces and Moments block.

The Digital DATCOM structure coefficients must correspond to the dimensions of the breakpoints (alpha, mach, alt, grndht, and delta) to be used with the Digital DATCOM Forces and Moments block.

\section*{References}
[1] The USAF Stability and Control Digital Datcom, AFFDL-TR-79-3032, 1979.
[2] Etkin, B., and L. D. Reid, Dynamics of Flight Stability and Control, John Wiley \& Sons, New York, 1996.
[3] Roskam, J., "Airplane Design Part VI: Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics," Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1987.
[4] Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{Example}

See asbSkyHogg for an example of this block.

\section*{See Also}

Aerodynamic Forces and Moments

\section*{Direction Cosine Matrix Body to Wind}

Convert angle of attack and sideslip angle to direction cosine matrix

\section*{Library}

Utilities/Axes Transformations

The Direction Cosine Matrix Body to Wind block converts angle of attack and sideslip angle into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector in body axes (\(o x_{0}, o y_{0}, o z_{0}\)) into a vector in wind axes \(\left(o x_{2}, o y_{2}, o z_{2}\right)\). The order of the axis rotations required to bring this about is:

1 A rotation about \(o y_{0}\) through the angle of attack (\(\alpha\)) to axes (\(o x_{1}, o y_{1}, o z_{1}\))
2 A rotation about \(o z_{1}\) through the sideslip angle (\(\beta\)) to axes (\(o x_{2}, o y_{2}, o z_{2}\))
\[
\begin{aligned}
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=D C M_{w b}\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \beta & \sin \beta & 0 \\
-\sin \beta & \cos \beta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]\left[\begin{array}{c}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]}
\end{aligned}
\]

Combining the two axis transformation matrices defines the following DCM.
\[
D C M_{w b}=\left[\begin{array}{ccc}
\cos \alpha \cos \beta & \sin \beta & \sin \alpha \cos \beta \\
-\cos \alpha \sin \beta & \cos \beta & -\sin \alpha \sin \beta \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\]

\section*{Dialog Box}

Function Block Parameters: Direction Cosine Matrix Body to Wind
DCM Body to Wind (mask) (link)
Determine the 3-by-3 direction cosine matrix (DCM) from sideslip angle and angle of attack (beta and alpha). The output DCM transforms vectors from body axes to wind axes.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
First & \begin{tabular}{l}
2 -by-1 vector
\end{tabular} & \begin{tabular}{l}
Contains the angle of attack and sideslip angle, \\
in radians.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
3-by-3 direction cosine \\
matrix
\end{tabular} & \begin{tabular}{l}
Transforms body-fixed vectors to wind-fixed \\
vectors.
\end{tabular} \\
\hline
\end{tabular}

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

Direction Cosine Matrix Body to Wind to Alpha and Beta
Direction Cosine Matrix to Rotation Angles
Direction Cosine Matrix to Wind Angles

\section*{Rotation Angles to Direction Cosine Matrix}

Wind Angles to Direction Cosine Matrix

\section*{Direction Cosine Matrix Body to Wind to Alpha and Beta}

Convert direction cosine matrix to angle of attack and sideslip angle

\section*{Library}

Utilities/Axes Transformations

\section*{Description}

The Direction Cosine Matrix Body to Wind to Alpha and Beta block converts a 3-by-3 direction cosine matrix (DCM) into angle of attack and sideslip angle. The DCM matrix performs the coordinate transformation of a vector in body axes (\(o x_{0}, o y_{0}, o z_{0}\)) into a vector in wind axes (\(o x_{2}, o y_{2}, o z_{2}\)). The order of the axis rotations required to bring this about is:

1 A rotation about \(o y_{0}\) through the angle of attack (\(\alpha\)) to axes (\(o x_{1}, o y_{1}, o z_{1}\))
2 A rotation about \(o z_{1}\) through the sideslip angle (\(\beta\)) to axes (\(o x_{2}, o y_{2}, o z_{2}\))
\[
\begin{aligned}
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=D C M_{w b}\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \beta & \sin \beta & 0 \\
-\sin \beta & \cos \beta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]\left[\begin{array}{c}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]}
\end{aligned}
\]

Combining the two axis transformation matrices defines the following DCM.
\[
D C M_{w b}=\left[\begin{array}{ccc}
\cos \alpha \cos \beta & \sin \beta & \sin \alpha \cos \beta \\
-\cos \alpha \sin \beta & \cos \beta & -\sin \alpha \sin \beta \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\]

To determine angles from the DCM, the following equations are used:
\[
\begin{aligned}
& \alpha=\operatorname{asin}(-D C M(3,1)) \\
& \beta=\operatorname{asin}(D C M(1,2))
\end{aligned}
\]

\section*{Dialog Box}

Function Block Parameters: Direction Cosine Matrix Body to Wind t... \(x^{x}\) DCM2AB (mask) (link)

Determine a sideslip angle and an angle of attack (beta and alpha) from the 3-by-3 direction cosine matrix (DCM). The input DCM transforms vectors from body axes to wind axes.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
3-by-3 direction cosine \\
matrix
\end{tabular} & \begin{tabular}{l}
Transforms body-fixed vectors to wind-fixed \\
vectors.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
First & 2 -by-1 vector & \begin{tabular}{l}
Contains angle of attack and sideslip angle, in \\
radians.
\end{tabular} \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

This implementation generates angles that lie between \(\pm 90\) degrees.

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

Direction Cosine Matrix Body to Wind
Direction Cosine Matrix to Rotation Angles
Direction Cosine Matrix to Wind Angles
Rotation Angles to Direction Cosine Matrix
Wind Angles to Direction Cosine Matrix

\section*{Direction Cosine Matrix ECEF to NED}

Convert geodetic latitude and longitude to direction cosine matrix

\section*{Library}

Utilities/Axes Transformations

The Direction Cosine Matrix ECEF to NED block converts geodetic latitude and longitude into a 3 -by- 3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector in Earth-centered Earth-fixed (ECEF) axes (ox \({ }_{0}\), \(o y_{0}, o z_{0}\)) into a vector in north-east-down (NED) axes (\(o x_{2}, o y_{2}, o z_{2}\)). The order of the axis rotations required to bring this about is:

1 A rotation about \(o z_{0}\) through the longitude (\({ }^{\prime}\)) to axes (\(o x_{1}, o y_{1}, o z_{1}\))
2 A rotation about \(o y_{1}\) through the geodetic latitude (\(\mu\)) to axes (\(o x_{2}, o y_{2}, o z_{2}\))
\[
\begin{aligned}
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=D C M_{e f}\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\sin \mu & 0 & \cos \mu \\
0 & 1 & 0 \\
-\cos \mu & 0 & -\sin \mu
\end{array}\right]\left[\begin{array}{ccc}
\cos \imath & \sin \imath & 0 \\
-\sin \imath & \cos \imath & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]}
\end{aligned}
\]

Combining the two axis transformation matrices defines the following DCM.
\[
D C M_{\text {ef }}=\left[\begin{array}{ccc}
-\sin \mu \cos \imath & -\sin \mu \sin \imath & \cos \mu \\
-\sin \imath & \cos \imath & 0 \\
-\cos \mu \cos \imath & -\cos \mu \sin \imath & -\sin \mu
\end{array}\right]
\]

\section*{Dialog Box}

Function Block Parameters: Direction Cosine Matrix ECEF to NED

DCM ECEF to NED (mask) (link)
Determine the 3-by-3 direction cosine matrix (DCM) from geodetic latitude and longitude (mu and I). The output DCM transforms vectors from Earth Centered Earth Fixed (ECEF) axes to geodetic earth or north-east-down (NED) axes.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & 2-by-1 vector & Contains the geodetic latitude and longitude, in degrees. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Output & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
3-by-3 direction cosine \\
matrix
\end{tabular} & Transforms ECEF vectors to NED vectors.
\end{tabular}

\section*{Assumptions}

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the \(x\)-axis intersects the Greenwich meridian and the equator, the \(z\)-axis is the mean spin axis of the planet, positive to the north, and the \(y\)-axis completes the right-hand system.

\section*{References}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA Education Series, Reston, Virginia, 2000.
"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.

\section*{See Also}

Direction Cosine Matrix ECEF to NED to Latitude and Longitude
Direction Cosine Matrix to Rotation Angles
Direction Cosine Matrix to Wind Angles
ECEF Position to LLA
Rotation Angles to Direction Cosine Matrix
LLA to ECEF Position
Wind Angles to Direction Cosine Matrix

\section*{Direction Cosine Matrix ECEF to NED to Latitude and Longitude}

Convert direction cosine matrix to geodetic latitude and longitude

\section*{Library}

Utilities/Axes Transformations

The Direction Cosine Matrix ECEF to NED to Latitude and Longitude block converts a 3-by-3 direction cosine matrix (DCM) into geodetic latitude and longitude. The DCM matrix performs the coordinate transformation of a vector in Earth-centered Earth-fixed (ECEF) axes (\(o x_{0}, o y_{0}, o z_{0}\)) into a vector in north-east-down (NED) axes (\(o x_{2}, o y_{2}, o z_{2}\)). The order of the axis rotations required to bring this about is:

1 A rotation about \(o z_{0}\) through the longitude (\((\mathrm{l})\) to axes (\(o x_{1}, o y_{1}, o z_{1}\))
2 A rotation about \(o y_{1}\) through the geodetic latitude (\(\mu\)) to axes (\(o x_{2}, o y_{2}, o z_{2}\))
\[
\begin{aligned}
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=D C M_{e f}\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
o x_{2} \\
o y_{2} \\
o z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\sin \mu & 0 & \cos \mu \\
0 & 1 & 0 \\
-\cos \mu & 0 & -\sin \mu
\end{array}\right]\left[\begin{array}{ccc}
\cos \imath & \sin \imath & 0 \\
-\sin \imath & \cos \imath & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]}
\end{aligned}
\]

Combining the two axis transformation matrices defines the following DCM.
\[
D C M_{e f}=\left[\begin{array}{ccc}
-\sin \mu \cos \imath & -\sin \mu \sin \imath & \cos \mu \\
-\sin \imath & \cos \imath & 0 \\
-\cos \mu \cos \imath & -\cos \mu \sin \imath & -\sin \mu
\end{array}\right]
\]

To determine geodetic latitude and longitude from the DCM, the following equations are used:
\[
\begin{aligned}
& \mu=\operatorname{asin}(-D C M(3,3)) \\
& \imath=\operatorname{atan}\left(\frac{-D C M(2,1)}{D C M(2,2)}\right)
\end{aligned}
\]

\section*{Dialog Box}

Function Block Parameters: Direction Cosine Matrix ECEF to NED to... DCM to LATLON (mask) (link)

Determine a geodetic latitude and longitude (mu and I) from the 3-by-3 direction cosine matrix (DCM). The input DCM transforms vectors from Earth Centered Earth Fixed(ECEF) axes to geodetic earth or north-east-down (NED) axes.

OK Cancel

Help
Apply

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
3-by-3 direction cosine \\
matrix
\end{tabular} & \begin{tabular}{l}
Transforms ECEF vectors to NED vectors.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
\hline First & 2 -by- 1 vector & \begin{tabular}{l}
Contains the geodetic latitude and longitude, in \\
degrees.
\end{tabular} \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

This implementation generates a geodetic latitude that lies between \(\pm 90\) degrees, and longitude that lies between \(\pm 180\) degrees.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the \(x\)-axis intersects the Greenwich meridian and the equator, the \(z\)-axis is the mean spin axis of the planet, positive to the north, and the \(y\)-axis completes the right-hand system.

\section*{References}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA Education Series, Reston, Virginia, 2000.
"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.

\section*{See Also}

Direction Cosine Matrix ECEF to NED
Direction Cosine Matrix to Rotation Angles
Direction Cosine Matrix to Wind Angles
ECEF Position to LLA
Rotation Angles to Direction Cosine Matrix
LLA to ECEF Position
Wind Angles to Direction Cosine Matrix

\section*{Direction Cosine Matrix ECI to ECEF}

Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed (ECEF) coordinates

\section*{Library}

Utilities/Axes Transformations

The Direction Cosine Matrix ECI to ECEF block calculates the position direction cosine matrix (ECI to ECEF), based on the specified reduction method and Universal Coordinated Time (UTC), for the specified time and geophysical data.

\section*{Dialog Box}
```

Function Block Parameters: Direction Cosine Matrix ECI to ECEF
\Sigma3
DCMECItoECEF (mask) (link)
Determine the 3-by-3 direction cosine matrix (DCM) from an Earth
Centered Inertial (ECI) reference frame to an Earth Centered Earth
Fixed reference frame.
Select the reduction method and enter the Universal Coordinated
Time (UTC) for which the matrix is implemented.
The IAU-76/FK5 method returns a transformation matrix that does
not have the characteristics of a DCM due to the polar motion
approximation.
Parameters
Reduction: IAU-2000/2006 -
Year:
2013
Month: January
Day:
1
Hour:
0
Minutes:
0
Seconds:
0
Time increment: Day
Action for out of range input: Error
|}\mathrm{ Higher accuracy parameters
OK
Cancel Help
Apply

```

\section*{Reduction}

Reduction method to calculate the direction cosine matrix. Method can be one of the following:
- IAU-76/FK5

Reduce the calculation using the International Astronomical Union (IAU)-76/ Fifth Fundamental Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference coordinate system for the conversion is FK5.

Note: This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to reduce the calculation. This model and theory are no longer current, but the software provides this reduction method for existing implementations. Because of the polar motion approximation that this reduction method uses, the block calculates the transformation matrix rather than the direction cosine matrix.
- IAU-2000/2006

Reduce the calculation using the International Astronomical Union (IAU)-2000/2006 reference system. Choose this reduction method if the reference coordinate system for the conversion is IAU-2000. This reduction method uses the P03 precession model to reduce the calculation.

\section*{Year}

Specify the year used to calculate the Universal Coordinated Time (UTC) date. Enter a double value that is a whole number greater than 1, such as 2013.

\section*{Month}

Specify the month used to calculate the UTC date. From the list, select the month from January to December.

\section*{Day}

Specify the day used to calculate the UTC date. From the list, select the day from 1 to 31.

Hour
Specify the hour used to calculate the UTC date. Enter a double value that is a whole number, from 0 to 24.

\section*{Minutes}

Specify the minutes used to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60 .

\section*{Seconds}

Specify the seconds used to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60 .

\section*{Time Increment}

Specify the time increment between the specified date and the desired model simulation time. The block adjusts the calculated direction cosine matrix to take into account the time increment from model simulation. For example, selecting Day and connecting a simulation timer to the port means that each time increment unit is one day and the block adjusts its calculation based on that simulation time.

This parameter corresponds to the fifth block input, the clock source.
Possible values are Day, Hour, Min, Sec, and None. If you select None, the calculated Julian date does not take into account the model simulation time. Selecting this option removes the fifth block input.

\section*{Action for out of range input}

Specify the block behavior when the block inputs are out of range.
\begin{tabular}{|l|l|}
\hline Action & Description \\
\hline None & No action. \\
\hline Warning & \begin{tabular}{l}
Warning in the MATLAB Command Window, model \\
simulation continues.
\end{tabular} \\
\hline Error (default) & \begin{tabular}{l}
MATLAB returns an exception, model simulation \\
stops.
\end{tabular} \\
\hline
\end{tabular}

\section*{Higher accuracy parameters}

Select this check box to enable the following inputs. These inputs let you better control the conversion result. See "Inputs and Outputs" on page 4-247 for a description.
\(\Delta U T 1\)
\(\triangle A T\)
[xp,yp]
\([\Delta \delta \Psi, \Delta \delta \varepsilon]\) or \([\mathrm{d} X, \mathrm{~d} Y]\)

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Scalar & \(\Delta U T 1\), difference between UTC and Universal \\
(Optional) & & Time (UT1) in seconds, for which the function
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline & & calculates the direction cosine or transformation matrix, for example, 0.234. \\
\hline Second (Optional) & Scalar & \(\triangle A T\), difference between International Atomic Time (IAT) and UTC in seconds, for which the function calculates the direction cosine or transformation matrix, for example, 32. \\
\hline Third (Optional) & 1-by-2 array & [\(x p, y p\)], polar displacement of the Earth, in radians, from the motion of the Earth crust, along the \(x\) - and \(y\)-axes, for example, [-0.0682e-5 0.1616e-5] \\
\hline \multirow[t]{2}{*}{Fourth (Optional)} & \multirow[t]{2}{*}{1-by-2 array} & \begin{tabular}{l}
- If reduction method is IAU-2000/2006, this input is the adjustment to the location of the Celestial Intermediate Pole (CIP), specified in radians. This location (\([\mathrm{d} X, \mathrm{~d} Y]\)) is along the \(x\) - and \(y\)-axis, for example, \([-0.2530 \mathrm{e}-6\) -0.0188e-6]. \\
- If reduction method is IAU-76/FK5, this input is the adjustment to the longitude (\([\Delta \delta \Psi, \Delta \delta \varepsilon]\)), specified in radians, for example, \([-0.2530 \mathrm{e}-6\)-0.0188e-6].
\end{tabular} \\
\hline & & For historical values, see the International Earth Rotation and Reference Systems Service Web site (http: / /www.iers.org) and navigate to the Earth Orientation Data Data/ Products page. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Fifth \\
(Optional)
\end{tabular}} & \multirow[t]{2}{*}{Scalar} & Time increment, for example the Clock block. \\
\hline & & If the Higher accuracy parameters check box is cleared and the Time Increment parameter is a value other than None, the block has no input. \\
\hline Output & Dimension Type & Description \\
\hline First & 3-by-3 array & Direction cosine or transformation matrix. \\
\hline
\end{tabular}

\section*{See Also}

ECEF Position to LLA \| Geocentric to Geodetic Latitude \| Geodetic to Geocentric Latitude | LLA to ECEF Position

\section*{More About}
- http://www.iers.org

\section*{Direction Cosine Matrix to Quaternions}

Convert direction cosine matrix to quaternion vector

\section*{Library}

Utilities/Axes Transformations

The Direction Cosine Matrix to Quaternions block transforms a 3-by-3 direction cosine matrix (DCM) into a four-element unit quaternion vector (\(q_{0}, q_{1}, q_{2}, q_{3}\)). The DCM performs the coordinate transformation of a vector in inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:
\[
D C M=\left[\begin{array}{ccc}
\left(q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & 2\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}-q_{0} q_{3}\right) & \left(q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}+q_{0} q_{2}\right) & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) & \left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\right)
\end{array}\right]
\]

Using this representation of the DCM, there are a number of calculations to arrive at the correct quaternion. The first of these is to calculate the trace of the DCM to determine which algorithms are used. If the trace is greater that zero, the quaternion can be automatically calculated. When the trace is less than or equal to zero, the major diagonal element of the DCM with the greatest value must be identified to determine the final algorithm used to calculate the quaternion. Once the major diagonal element is identified, the quaternion is calculated. For a detailed view of these algorithms, look under the mask of this block.

\section*{Dialog Box}

Function Block Parameters: Direction Cosine Matrix to Quaternions
DCM2Quaternion (mask) (link)
Determine the \(4 \times 1\) quaternion orientation vector from a 3-by-3 direction cosine matrix (DCM). The input DCM transforms vectors from geodetic earth or north-east-down (NED) axes to body axes.

\section*{Inputs and Outputs}
\begin{tabular}{|lll|}
\hline Input & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
3-by-3 direction cosine \\
matrix
\end{tabular} & \\
\hline Output & Dimension Type & Description \\
\hline First & 4-by-1 quaternion vector & \\
\hline
\end{tabular}

\section*{See Also}

Direction Cosine Matrix to Rotation Angles
Rotation Angles to Direction Cosine Matrix
Rotation Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Rotation Angles

\section*{Direction Cosine Matrix to Rotation Angles}

Convert direction cosine matrix to rotation angles

\section*{Library}

Utilities/Axes Transformations

Description \(\begin{array}{ll}D C M_{\text {Be }} \quad\left[R_{1} R_{2} R_{3}\right]\end{array}\)
The Direction Cosine Matrix to Rotation Angles block converts a 3-by-3 direction cosine matrix (DCM) into three rotation angles R1, R2, and R3, respectively the first, second, and third rotation angles. The DCM matrix performs the coordinate transformation of a vector in inertial axes into a vector in body axes. The block Rotation Order parameter specifies the order of the block output rotations. For example, if Rotation Order has a value of ZYX, the block outputs are in the rotation order \(z-y-x\) (psi theta phi).

\section*{Dialog Box}
```

Function Block Parameters: Direction Cosine Matrix to Rotation Angles
DCM2Ang (mask) (link)
Determine rotation vector from the 3-by-3 direction cosine matrix (DCM).
The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate an R2 angle that lies between +/- pi/2 radians, and R1
and R3 angles that lie between +/- pi radians.
The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate an R2 angle that lies between 0 and pi radians, and R1
and R3 angles that lie between +/- pi radians.
The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate an R2 angle that lies between +/- pi/2 radians, and R1
and R3 angles that lie between +/- pi radians. However, when R2 is +/- pi/2
radians, R3 is set to 0 radians.
The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate an R2 angle that lies between 0 and pi radians, and R1
and R3 angles that lie between +/- pi radians. However, when R2 is 0 or +/- pi
radians, R3 is set to 0 radians.
Parameters
Rotation Order: ZYX
OK Cancel Help Apply

```

\section*{Rotation Order}

Specifies the output rotation order for three rotation angles. From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, or XZX. The default is ZYX.

\section*{Limitation}

The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that lies between \(\pm 90\) degrees, and R1 and R3 angles that lie between \(\pm 180\) degrees.

The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between \(\pm 180\) degrees.

The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that lies between \(\pm 90\) degrees, and R1 and R3 angles that lie between \(\pm 180\) degrees. However, when R2 is \(\pm 90\) degrees, R3 is set to 0 degrees.

The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between \(\pm 180\) degrees. However, when R2 is 0 or \(\pm 180\) degrees, \(R 3\) is set to 0 degrees.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
\hline First & 3-by-3 matrix & Contains the direction cosine matrix. \\
\hline Output & Dimension Type & Description \\
\hline First & 3 -by-1 vector & Contains the rotation angles, in radians.
\end{tabular}

\section*{See Also}

Direction Cosine Matrix to Quaternions
Quaternions to Direction Cosine Matrix
Rotation Angles to Direction Cosine Matrix

\section*{Direction Cosine Matrix to Wind Angles}

Convert direction cosine matrix to wind angles

\section*{Library}

Utilities/Axes Transformations

The Direction Cosine Matrix to Wind Angles block converts a 3-by-3 direction cosine matrix (DCM) into three wind rotation angles. The DCM matrix performs the coordinate transformation of a vector in earth axes (\(o x_{0}, o y_{0}, o z_{0}\)) into a vector in wind axes (\(o x_{3}, o y_{3}\), \(o z_{3}\)). The order of the axis rotations required to bring this about is:

1 A rotation about \(o z_{0}\) through the heading angle \((x)\) to axes (\(o x_{1}, o y_{1}, o z_{1}\))
2 A rotation about \(o y_{1}\) through the flight path angle (\(\gamma\)) to axes (\(o x_{2}, o y_{2}, o z_{2}\))
3 A rotation about \(o x_{2}\) through the bank angle (\(\mu\)) to axes (\(o x_{3}, o y_{3}, o z_{3}\))
\[
\begin{aligned}
& {\left[\begin{array}{l}
o x_{3} \\
o y_{3} \\
o z_{3}
\end{array}\right]=D C M_{w e}\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
o x_{3} \\
o y_{3} \\
o z_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left[\begin{array}{ccc}
\cos \chi & \sin \chi & 0 \\
-\sin \chi & \cos \chi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]}
\end{aligned}
\]

Combining the three axis transformation matrices defines the following DCM.
\[
D C M_{w e}=\left[\begin{array}{ccc}
\cos \gamma \cos \chi & \cos \gamma \sin \chi & -\sin \gamma \\
(\sin \mu \sin \gamma \cos \chi-\cos \mu \sin \chi) & (\sin \mu \sin \gamma \sin \chi+\cos \mu \cos \chi) & \sin \mu \cos \gamma \\
(\cos \mu \sin \gamma \cos \chi+\sin \mu \sin \chi) & (\cos \mu \sin \gamma \sin \chi-\sin \mu \cos \chi) & \cos \mu \cos \gamma
\end{array}\right]
\]

To determine wind angles from the DCM, the following equations are used:
\[
\begin{aligned}
& \mu=\operatorname{atan}\left(\frac{D C M(2,3)}{D C M(3,3)}\right) \\
& \gamma=\operatorname{asin}(-D C M(1,3)) \\
& \chi=\operatorname{atan}\left(\frac{D C M(1,2)}{D C M(1,1)}\right)
\end{aligned}
\]

\section*{Dialog Box}

Function Block Parameters: Direction Cosine Matrix to Wind Angles
DCM2Wind (mask) (link)
Determine a wind orientation (mu , gamma, chi) from the 3-by-3 direction cosine matrix (DCM). The input DCM transforms vectors from geodetic earth or north-east-down (NED) axes to wind axes.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
3-by-3 direction cosine \\
matrix
\end{tabular} & \begin{tabular}{l}
Transforms earth vectors to wind vectors.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
First & 3 -by- vector & Contains the wind angles, in radians. \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

This implementation generates a flight path angle that lies between \(\pm 90\) degrees, and bank and heading angles that lie between \(\pm 180\) degrees.

\section*{See Also}

Direction Cosine Matrix Body to Wind
Direction Cosine Matrix Body to Wind to Alpha and Beta
Direction Cosine Matrix to Rotation Angles
Rotation Angles to Direction Cosine Matrix
Wind Angles to Direction Cosine Matrix

\section*{Discrete Wind Gust Model}

Generate discrete wind gust

\section*{Library}

Environment/Wind

The Discrete Wind Gust Model block implements a wind gust of the standard "1cosine" shape. This block implements the mathematical representation in the Military Specification MIL-F-8785C [1]. The gust is applied to each axis individually, or to all three axes at once. You specify the gust amplitude (the increase in wind speed generated by the gust), the gust length (length, in meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response to large wind disturbances.

The mathematical representation of the discrete gust is
\[
V_{\text {wind }}= \begin{cases}0 & x<0 \\ \frac{V_{m}}{2}\left(1-\cos \left(\frac{\pi x}{d_{m}}\right)\right) & 0 \leq x \leq d_{m} \\ V_{m} & x>d_{m}\end{cases}
\]
where \(V_{\mathrm{m}}\) is the gust amplitude, \(d_{\mathrm{m}}\) is the gust length, \(x\) is the distance traveled, and \(V_{\text {wind }}\) is the resultant wind velocity in the body axis frame.

\section*{Dialog Box}
```

曾 Function Block Parameters: Discrete Wind Gust Model$x$
Discrete Wind Gust Model (mask) (link)
Generate a discrete wind gust. The gust profile takes the '1-cosine'
form.
Parameters
Units: Metric (MKS)
| Gust in u-axis
Gust in v-axis
| Gust in w-axis
Gust start time (sec):
5
Gust length [dx dy dz] (m):
[120 120 80]
Gust amplitude [ug vg wg] (m/s):
[3.5 3.5 3.0]
OK Cancel Help Apply

```

\section*{Units}

Define the units of wind gust.
\begin{tabular}{|l|l|l|}
\hline Units & Wind & Altitude \\
\hline Metric (MKS) & Meters/second & Meters \\
\hline English (Velocity in ft/s) & Feet/second & Feet \\
\hline English (Velocity in kts) & Knots & Feet \\
\hline
\end{tabular}

\section*{Gust in u-axis}

Select to apply the wind gust to the \(u\)-axis in the body frame.

\section*{Gust in v-axis}

Select to apply the wind gust to the \(v\)-axis in the body frame.

\section*{Gust in w-axis}

Select to apply the wind gust to the \(w\)-axis in the body frame.

\section*{Gust start time (sec)}

The model time, in seconds, at which the gust begins.

\section*{Gust length [dx dy dz] (m or f)}

The length, in meters or feet (depending on the choice of units), over which the gust builds up in each axis. These values must be positive.

\section*{Gust amplitude [ug vg wg] (m/s, f/s, or knots)}

The magnitude of the increase in wind speed caused by the gust in each axis. These values may be positive or negative.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the airspeed in units selected. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the wind speed in units selected. \\
\hline
\end{tabular}

\section*{Examples}

See Discrete Wind Gust Model in aeroblk_HL20 for an example of this block.

\section*{Reference}
U.S. Military Specification MIL-F-8785C, 5 November 1980.

\section*{See Also}

Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)

\section*{Von Karman Wind Turbulence Model (Continuous)}

Wind Shear Model

\section*{Dryden Wind Turbulence Model (Continuous)}

Generate continuous wind turbulence with Dryden velocity spectra

\section*{Library}

Environment/Wind

\section*{Description}

The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed \(V\) through a frozen turbulence field with a spatial frequency of \(\Omega\) radians per meter, the circular frequency \(\omega\) is calculated by multiplying \(V\) by \(\Omega\). The following table displays the component spectra functions:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ MIL-F-8785C } & MIL-HDBK-1797 \\
\hline Longitudinal & \(\frac{2 \sigma_{u}^{2} L_{u}}{\pi V} \cdot \frac{1}{1+\left(L_{u} \frac{\omega}{V}\right)^{2}}\) & \(\frac{2 \sigma_{u}^{2} L_{u}}{\pi V} \cdot \frac{1}{1+\left(L_{u} \frac{\omega}{V}\right)^{2}}\) \\
\hline\(\Phi_{u}(\omega)\) & \(\frac{\sigma_{w}^{2}}{V L_{w}} \cdot \frac{0.8\left(\frac{\pi L_{w}}{4 b}\right)^{1 / 3}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}}\) & \(\frac{\sigma_{w}^{2}}{2 V L_{w}} \cdot \frac{0.8\left(\frac{2 \pi L_{w}}{4 b}\right)^{1 / 3}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}}\) \\
\hline\(\Phi_{p_{g}}(\omega)\) & \\
\hline
\end{tabular}

\section*{MIL-F-8785C}

MIL-HDBK-1797

\section*{Lateral}
\begin{tabular}{|c|c|c|}
\hline \(\Phi_{v}(\omega)\) & \[
\frac{\sigma_{v}^{2} L_{v}}{\pi V} \cdot \frac{1+3\left(L_{v} \frac{\omega}{V}\right)^{2}}{\left[1+\left(L_{v} \frac{\omega}{V}\right)^{2}\right]^{2}}
\] & \[
\frac{2 \sigma_{v}^{2} L_{v}}{\pi V} \cdot \frac{1+12\left(L_{v} \frac{\omega}{V}\right)^{2}}{\left[1+4\left(L_{v} \frac{\omega}{V}\right)^{2}\right]^{2}}
\] \\
\hline \(\Phi_{r}(\omega)\) & \[
\frac{\mp\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{3 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)
\] & \[
\frac{\mp\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{3 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)
\] \\
\hline \multicolumn{3}{|l|}{Vertical} \\
\hline \(\Phi_{w}(\omega)\) & \[
\frac{\sigma_{w}^{2} L_{w}}{\pi V} \cdot \frac{1+3\left(L_{w} \frac{\omega}{V}\right)^{2}}{\left[1+\left(L_{w} \frac{\omega}{V}\right)^{2}\right]^{2}}
\] & \[
\frac{2 \sigma_{w}^{2} L_{w}}{\pi V} \cdot \frac{1+12\left(L_{w} \frac{\omega}{V}\right)^{2}}{\left[1+4\left(L_{w} \frac{\omega}{V}\right)^{2}\right]^{2}}
\] \\
\hline \(\Phi_{q}(\omega)\) & \[
\frac{ \pm\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{w}(\omega)
\] & \[
\frac{ \pm\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{w}(\omega)
\] \\
\hline
\end{tabular}

The variable \(b\) represents the aircraft wingspan. The variables \(L_{u}, L_{v}, L_{w}\) represent the turbulence scale lengths. The variables \(\sigma_{u}, \sigma_{v}, \sigma_{w}\) represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the specifications as three variations, which are displayed in the following table:
\[
p_{g}=\frac{\partial w_{g}}{\partial y} \quad q_{g}=\frac{\partial w_{g}}{\partial x} \quad r_{g}=-\frac{\partial v_{g}}{\partial x}
\]
\[
\begin{array}{lll}
p_{g}=\frac{\partial w_{g}}{\partial y} & q_{g}=\frac{\partial w_{g}}{\partial x} & r_{g}=\frac{\partial v_{g}}{\partial x} \\
p_{g}=-\frac{\partial w_{g}}{\partial y} & q_{g}=-\frac{\partial w_{g}}{\partial x} & r_{g}=\frac{\partial v_{g}}{\partial x}
\end{array}
\]

The variations affect only the vertical \(\left(q_{g}\right)\) and lateral \(\left(r_{g}\right)\) turbulence angular rates.
Keep in mind that the longitudinal turbulence angular rate spectrum
\[
\Phi_{p_{g}}(\omega)
\]
is a rational function. The rational function is derived from curve-fitting a complex algebraic function, not the vertical turbulence velocity spectrum, \(\Phi_{w}(\omega)\), multiplied by a scale factor. Because the turbulence angular rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate spectra:
\begin{tabular}{ll}
Vertical & Lateral \\
\(\Phi_{q}(\omega)\) & \(-\Phi_{r}(\omega)\) \\
\(\Phi_{q}(\omega)\) & \(\Phi_{r}(\omega)\) \\
\(-\Phi_{q}(\omega)\) & \(\Phi_{r}(\omega)\)
\end{tabular}

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal is passed through forming filters. The forming filters are derived from the spectral square roots of the spectrum equations.

The following table displays the transfer functions:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ MIL-F-8785C } & MIL-HDBK-1797 \\
\hline Longitudinal & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{MIL-F-8785C} & MIL-HDBK-1797 \\
\hline \(H_{u}(s)\) & \[
\sigma_{u} \sqrt{\frac{2 L_{u}}{\pi V}} \cdot \frac{1}{1+\frac{L_{u}}{V} s}
\] & \[
\sigma_{u} \sqrt{\frac{2 L_{u}}{\pi V}} \cdot \frac{1}{1+\frac{L_{u}}{V} s}
\] \\
\hline \(H_{p}(s)\) & \[
\sigma_{w} \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4 b}\right)^{1 / 6}}{L_{w}{ }^{1 / 3}\left(1+\left(\frac{4 b}{\pi V}\right) s\right)}
\] & \[
\sigma_{w} \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4 b}\right)^{1 / 6}}{\left(2 L_{w}\right)^{1 / 3}\left(1+\left(\frac{4 b}{\pi V}\right) s\right)}
\] \\
\hline \multicolumn{3}{|l|}{Lateral} \\
\hline \(H_{v}(s)\) & \[
\sigma_{v} \sqrt{\frac{L_{v}}{\pi V}} \cdot \frac{1+\frac{\sqrt{3} L_{v}}{V} s}{\left(1+\frac{L_{v}}{V} s\right)^{2}}
\] & \[
\sigma_{v} \sqrt{\frac{2 L_{v}}{\pi V}} \cdot \frac{1+\frac{2 \sqrt{3} L_{v}}{V} s}{\left(1+\frac{2 L_{v}}{V} s\right)^{2}}
\] \\
\hline \(H_{r}(s)\) & \[
\frac{\mp \frac{s}{V}}{\left(1+\left(\frac{3 b}{\pi V}\right) s\right)} \cdot H_{v}(s)
\] & \[
\frac{\mp \frac{s}{V}}{\left(1+\left(\frac{3 b}{\pi V}\right) s\right)} \cdot H_{v}(s)
\] \\
\hline \multicolumn{3}{|l|}{Vertical} \\
\hline \(H_{w}(s)\) & \[
\sigma_{w} \sqrt{\frac{L_{w}}{\pi V}} \cdot \frac{1+\frac{\sqrt{3} L_{w}}{V} s}{\left(1+\frac{L_{w}}{V} s\right)^{2}}
\] & \[
\sigma_{w} \sqrt{\frac{2 L_{w}}{\pi V}} \cdot \frac{1+\frac{2 \sqrt{3} L_{w}}{V} s}{\left(1+\frac{2 L_{w}}{V} s\right)^{2}}
\] \\
\hline \(H_{q}(s)\) & \[
\frac{ \pm \frac{s}{V}}{\left(1+\left(\frac{4 b}{\pi V}\right) s\right)} \cdot H_{w}(s)
\] & \[
\frac{ \pm \frac{s}{V}}{\left(1+\left(\frac{4 b}{\pi V}\right) s\right)} \cdot H_{w}(s)
\] \\
\hline
\end{tabular}

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of altitude.

Note The military specifications result in the same transfer function after evaluating the turbulence scale lengths. The differences in turbulence scale lengths and turbulence transfer functions balance offset.

\section*{Low-Altitude Model (Altitude < 1000 feet)}

According to the military references, the turbulence scale lengths at low altitudes, where \(h\) is the altitude in feet, are represented in the following table:
\begin{tabular}{|l|l|}
\hline MIL-F-8785C & MIL-HDBK-1797 \\
\hline\(L_{w}=h\) & \(2 L_{w}=h\) \\
\(L_{u}=L_{v}=\frac{h}{(0.177+0.000823 h)^{1.2}}\) & \(L_{u}=2 L_{v}=\frac{h}{(0.177+0.000823 h)^{1.2}}\) \\
\hline
\end{tabular}

The turbulence intensities are given below, where \(W_{20}\) is the wind speed at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30 knots; and for severe turbulence, the wind speed is 45 knots.
\[
\begin{aligned}
& \sigma_{w}=0.1 W_{20} \\
& \frac{\sigma_{u}}{\sigma_{w}}=\frac{\sigma_{v}}{\sigma_{w}}=\frac{1}{(0.177+0.000823 h)^{0.4}}
\end{aligned}
\]

The turbulence axes orientation in this region is defined as follows:
- Longitudinal turbulence velocity, \(u_{g}\), aligned along the horizontal relative mean wind vector
- Vertical turbulence velocity, \(w_{g}\), aligned with vertical

At this altitude range, the output of the block is transformed into body coordinates.

\section*{Medium/High Altitudes (Altitude > 2000 feet)}

For medium to high altitudes the turbulence scale lengths and intensities are based on the assumption that the turbulence is isotropic. In the military references, the scale lengths are represented by the following equations:
\begin{tabular}{|l|l|}
\hline MIL-F-8785C & MIL-HDBK-1797 \\
\hline\(L_{u}=L_{v}=L_{w}=1750 \mathrm{ft}\) & \(L_{u}=2 L_{v}=2 L_{w}=1750 \mathrm{ft}\) \\
\hline
\end{tabular}

The turbulence intensities are determined from a lookup table that provides the turbulence intensity as a function of altitude and the probability of the turbulence intensity being exceeded. The relationship of the turbulence intensities is represented in the following equation: \(\sigma_{u}=\sigma_{v}=\sigma_{w}\).

The turbulence axes orientation in this region is defined as being aligned with the body coordinates.

\section*{Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)}

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates are determined by linearly interpolating between the value from the low
altitude model at 1000 feet transformed from mean horizontal wind coordinates to body coordinates and the value from the high altitude model at 2000 feet in body coordinates.

\section*{Dialog Box}

\section*{Units}

Define the units of wind speed due to the turbulence.
\begin{tabular}{|l|l|l|l|}
\hline Units & Wind Velocity & Altitude & Airspeed \\
\hline Metric (MKS) & Meters/second & Meters & Meters/second \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Units & Wind Velocity & Altitude & Airspeed \\
\hline \begin{tabular}{l}
English (Velocity in \\
ft/s)
\end{tabular} & Feet/second & Feet & Feet/second \\
\hline \begin{tabular}{l}
English (Velocity in \\
kts)
\end{tabular} & Knots & Feet & Knots \\
\hline
\end{tabular}

\section*{Specification}

Define which military reference to use. This affects the application of turbulence scale lengths in the lateral and vertical directions.

\section*{Model type}

Select the wind turbulence model to use.
\begin{tabular}{|l|l|}
\hline Continuous Von Karman (+q-r) & \begin{tabular}{l}
Use continuous representation of Von \\
Kármán velocity spectra with positive \\
vertical and negative lateral angular \\
rates spectra.
\end{tabular} \\
\hline Continuous Von Karman \((+q+r)\) & \begin{tabular}{l}
Use continuous representation of Von \\
Kármán velocity spectra with positive \\
vertical and lateral angular rates spectra.
\end{tabular} \\
\hline Continuous Von Karman (-q +r) & \begin{tabular}{l}
Use continuous representation of Von \\
Kármán velocity spectra with negative \\
vertical and positive lateral angular rates \\
spectra.
\end{tabular} \\
\hline Continuous Dryden (+q-r) & \begin{tabular}{l}
Use continuous representation of Dryden \\
velocity spectra with positive vertical and \\
negative lateral angular rates spectra.
\end{tabular} \\
\hline Continuous Dryden (+q +r) & \begin{tabular}{l}
Use continuous representation of Dryden \\
velocity spectra with positive vertical and \\
lateral angular rates spectra.
\end{tabular} \\
\hline Continuous Dryden (-q +r) & \begin{tabular}{l}
Use continuous representation of Dryden \\
velocity spectra with negative vertical \\
and positive lateral angular rates \\
spectra.
\end{tabular} \\
\hline Discrete Dryden (+q-r) & \begin{tabular}{l}
Use discrete representation of Dryden \\
velocity spectra with positive vertical and \\
negative lateral angular rates spectra.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Discrete Dryden \((+q+r)\) & \begin{tabular}{l}
Use discrete representation of Dryden \\
velocity spectra with positive vertical and \\
lateral angular rates spectra.
\end{tabular} \\
\hline Discrete Dryden (-q +r) & \begin{tabular}{l}
Use discrete representation of Dryden \\
velocity spectra with negative vertical \\
and positive lateral angular rates \\
spectra.
\end{tabular} \\
\hline
\end{tabular}

The Continuous Dryden selections conform to the transfer function descriptions.

\section*{Wind speed at \(6 \mathbf{m}\) defines the low altitude intensity}

The measured wind speed at a height of 6 meters (20 feet) provides the intensity for the low-altitude turbulence model.

\section*{Wind direction at 6 m (degrees clockwise from north)}

The measured wind direction at a height of 6 meters (20 feet) is an angle to aid in transforming the low-altitude turbulence model into a body coordinates.

\section*{Probability of exceedance of high-altitude intensity}

Above 2000 feet, the turbulence intensity is determined from a lookup table that gives the turbulence intensity as a function of altitude and the probability of the turbulence intensity's being exceeded.

\section*{Scale length at medium/high altitudes (m)}

The turbulence scale length above 2000 feet is assumed constant, and from the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density asymptote and gust load.

\section*{Wingspan}

The wingspan is required in the calculation of the turbulence on the angular rates.

\section*{Band-limited noise sample time (sec)}

The sample time at which the unit variance white noise signal is generated.

\section*{Noise seeds}

There are four random numbers required to generate the turbulence signals, one for each of the three velocity components and one for the roll rate. The turbulences on
the pitch and yaw angular rates are based on further shaping of the outputs from the shaping filters for the vertical and lateral velocities.

\section*{Turbulence on}

Selecting the check box generates the turbulence signals.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & scalar & Contains the altitude, in units selected. \\
Second & scalar & Contains the aircraft speed, in units selected. \\
Third & 3-by-3 matrix & Contains the direction cosine matrix.
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & Description \\
First & Three-element signal & \begin{tabular}{l}
Contains the turbulence velocities, in the \\
selected units.
\end{tabular} \\
Second & Three-element signal & \begin{tabular}{l}
Contains the turbulence angular rates, in \\
radians per second.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The frozen turbulence field assumption is valid for the cases of mean-wind velocity and the root-mean-square turbulence velocity, or intensity, is small relative to the aircraft's ground speed.

The turbulence model describes an average of all conditions for clear air turbulence because the following factors are not incorporated into the model:
- Terrain roughness
- Lapse rate
- Wind shears
- Mean wind magnitude
- Other meteorological factions (except altitude)

\section*{Examples}

See Airframe/Environment Models/Wind Models in aeroblk_HL20 for an example of this block.

\section*{References}
U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., "Background Information and User Guide for MIL-F-8785B(ASG), `Military Specification-Flying Qualities of Piloted Airplanes'," AD869856, Cornell Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series, 1988.

Ly, U., Chan, Y., "Time-Domain Computation of Aircraft Gust Covariance Matrices," AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, Danvers, Massachusetts, August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., "Background Information and User Guide for MIL-F-8785C, `Military Specification-Flying Qualities of Piloted Airplanes'," ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., "A Standard Kinematic Model for Flight Simulation at NASA-Ames," NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., "Simulation of Atmospheric Turbulent Gusts and Gust Gradients," AIAA Paper 81-0300, Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981.

Yeager, J., "Implementation and Testing of Turbulence Models for the F18-HARV Simulation," NASA CR-1998-206937, Lockheed Martin Engineering \& Sciences, March 1998.

\section*{See Also}

\author{
Dryden Wind Turbulence Model (Discrete) \\ Discrete Wind Gust Model \\ Wind Shear Model \\ Von Karman Wind Turbulence Model (Continuous)
}

\section*{Dryden Wind Turbulence Model (Discrete)}

Generate discrete wind turbulence with Dryden velocity spectra

\section*{Library}

Environment/Wind

\section*{Description}

The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral representation to add turbulence to the aerospace model by using band-limited white noise with appropriate digital filter finite difference equations. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed \(V\) through a frozen turbulence field with a spatial frequency of \(\Omega\) radians per meter, the circular frequency \(\omega\) is calculated by multiplying \(V\) by \(\Omega\). The following table displays the component spectra functions:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{ MIL-F-8785C } & MIL-HDBK-1797 \\
\hline \multicolumn{1}{|l|}{ Longitudinal } & \(\frac{2 \sigma_{u}^{2} L_{u}}{\pi V} \cdot \frac{1}{1+\left(L_{u} \frac{\omega}{V}\right)^{2}}\) & \(\frac{2 \sigma_{u}^{2} L_{u}}{\pi V} \cdot \frac{1}{1+\left(L_{u} \frac{\omega}{V}\right)^{2}}\) \\
\hline\(\Phi_{p}(\omega)\) & \(\frac{\sigma_{w}^{2}}{V L_{w}} \cdot \frac{0.8\left(\frac{\pi L_{w}}{4 b}\right)^{1 / 3}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}}\) & \(\frac{\sigma_{w}^{2}}{2 V L_{w}} \cdot \frac{0.8\left(\frac{2 \pi L_{w}}{4 b}\right)^{1 / 3}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}}\) \\
\hline
\end{tabular}

\section*{MIL-F-8785C}

\section*{MIL-HDBK-1797}

\section*{Lateral}
\begin{tabular}{|c|c|c|}
\hline\(\Phi_{v}(\omega)\) & \(\frac{\sigma_{v}^{2} L_{v}}{\pi V} \cdot \frac{1+3\left(L_{v} \frac{\omega}{V}\right)^{2}}{\left[1+\left(L_{v} \frac{\omega}{V}\right)^{2}\right]^{2}}\) & \(\frac{2 \sigma_{v}^{2} L_{v}}{\pi V} \cdot \frac{1+12\left(L_{v} \frac{\omega}{V}\right)^{2}}{\pi\left(1+4\left(L_{v} \frac{\omega}{V}\right)^{2}\right]^{2}}\) \\
\hline\(\Phi_{r}(\omega)\) & \(\frac{\mp\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{3 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)\) & \(\frac{\mp\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{3 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)\) \\
\hline Vertical & \(\frac{\sigma_{w}^{2} L_{w}}{\pi V} \cdot \frac{1+3\left(L_{w} \frac{\omega}{V}\right)^{2}}{\left[1+\left(L_{w} \frac{\omega}{V}\right)^{2}\right]^{2}}\) & \(\frac{2 \sigma_{w}^{2} L_{w}}{\pi V} \cdot \frac{1+12\left(L_{w} \frac{\omega}{V}\right)^{2}}{\left[1+4\left(L_{w} \frac{\omega}{V}\right)^{2}\right]^{2}}\) \\
\hline\(\Phi_{w}(\omega)\) & \(\frac{ \pm\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{w}(\omega)\) & \(\frac{ \pm\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{w}(\omega)\) \\
\hline\(\Phi_{q}(\omega)\) & &
\end{tabular}

The variable \(b\) represents the aircraft wingspan. The variables \(L_{u}, L_{v}, L_{w}\) represent the turbulence scale lengths. The variables \(\sigma_{u}, \sigma_{v}, \sigma_{w}\) represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the references as three variations, which are displayed in the following table:
\[
p_{g}=\frac{\partial w_{g}}{\partial y} \quad q_{g}=\frac{\partial w_{g}}{\partial x} \quad r_{g}=-\frac{\partial v_{g}}{\partial x}
\]
\[
\begin{array}{lll}
p_{g}=\frac{\partial w_{g}}{\partial y} & q_{g}=\frac{\partial w_{g}}{\partial x} & r_{g}=\frac{\partial v_{g}}{\partial x} \\
p_{g}=-\frac{\partial w_{g}}{\partial y} & q_{g}=-\frac{\partial w_{g}}{\partial x} & r_{g}=\frac{\partial v_{g}}{\partial x}
\end{array}
\]

The variations affect only the vertical \(\left(q_{g}\right)\) and lateral \(\left(r_{g}\right)\) turbulence angular rates.
Keep in mind that the longitudinal turbulence angular rate spectrum, \(\Phi_{p}(\omega)\), is a rational function. The rational function is derived from curve-fitting a complex algebraic function, not the vertical turbulence velocity spectrum, \(\Phi_{w}(\omega)\), multiplied by a scale factor. Because the turbulence angular rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate spectra:
\begin{tabular}{|l|l|}
\hline Vertical & Lateral \\
\hline\(\Phi_{q}(\omega)\) & \(-\Phi_{r}(\omega)\) \\
\(\Phi_{q}(\omega)\) & \(\Phi_{r}(\omega)\) \\
\(-\Phi_{q}(\omega)\) & \(\Phi_{r}(\omega)\) \\
\hline
\end{tabular}

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal is used in the digital filter finite difference equations.

The following table displays the digital filter finite difference equations:
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|l|}{ MIL-F-8785C } & MIL-HDBK-1797 \\
\hline \multicolumn{2}{|l|}{ Longitudinal } \\
\hline\(u_{g}\) & \(\left(1-\frac{V}{L_{u}} T\right) u_{g}+\sqrt{2 \frac{V}{L_{u}} T} \frac{\sigma_{u}}{\sigma_{\eta}} \eta_{1}\) & \(\left(1-\frac{V}{L_{u}} T\right) u_{g}+\sqrt{2 \frac{V}{L_{u}} T} \frac{\sigma_{u}}{\sigma_{\eta}} \eta_{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & MIL-F-8785C & MIL-HDBK-1797 \\
\hline \(p_{g}\) & \[
\begin{aligned}
& \left(1-\frac{2.6}{\sqrt{L_{w} b}} T\right) p_{g}+ \\
& \sqrt{2 \frac{2.6}{\sqrt{L_{w} b}} T} \sqrt{\frac{0.95}{\sqrt[3]{2 L_{w} b^{2}}} \sigma_{\eta}} \sigma_{w}
\end{aligned}
\] & \[
\begin{aligned}
& \left(1-\frac{2.6}{\sqrt{2 L_{w} b}} T\right) p_{g}+ \\
& \sqrt{2 \frac{2.6}{\sqrt{2 L_{w} b}} T} \frac{1.9}{\sqrt{2 L_{w} b}} \eta_{4} \\
& \sigma_{\eta}
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Lateral} \\
\hline \(v_{g}\) & \(\left(1-\frac{V}{L_{u}} T\right) v_{g}+\sqrt{2 \frac{V}{L_{u}} T} \frac{\sigma_{v}}{\sigma_{\eta}} \eta_{2}\) & \(\left(1-\frac{V}{L_{u}} T\right) v_{g}+\sqrt{2 \frac{V}{L_{u}} T} \frac{\sigma_{v}}{\sigma_{\eta}} \eta_{2}\) \\
\hline \(r_{g}\) & \(\left(1-\frac{\pi V}{3 b} T\right) r_{g} \mp \frac{\pi}{3 b}\left(v_{g}-v_{g_{\text {past }}}\right)\) & \(\left(1-\frac{\pi V}{3 b} T\right) r_{g} \mp \frac{\pi}{3 b}\left(v_{g}-v_{g_{\text {past }}}\right)\) \\
\hline \multicolumn{3}{|l|}{Vertical} \\
\hline \(w_{g}\) & \(\left(1-\frac{V}{L_{u}} T\right) w_{g}+\sqrt{2 \frac{V}{L_{u}} T} \frac{\sigma_{w}}{\sigma_{\eta}} \eta_{3}\) & \(\left(1-\frac{V}{L_{u}} T\right) w_{g}+\sqrt{2 \frac{V}{L_{u}} T} \frac{\sigma_{w}}{\sigma_{\eta}} \eta_{3}\) \\
\hline \(q_{g}\) & \(\left(1-\frac{\pi V}{4 b} T\right) q_{g} \pm \frac{\pi}{4 b}\left(w_{g}-w_{g_{\text {past }}}\right)\) & \(\left(1-\frac{\pi V}{4 b} T\right) q_{g} \pm \frac{\pi}{4 b}\left(w_{g}-w_{g_{\text {psst }}}\right)\) \\
\hline
\end{tabular}

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of altitude.

\section*{Low-Altitude Model (Altitude < 1000 feet)}

According to the military references, the turbulence scale lengths at low altitudes, where \(h\) is the altitude in feet, are represented in the following table:
\begin{tabular}{|l|l|}
\hline MIL-F-8785C & MIL-HDBK-1797 \\
\hline\(L_{w}=h\) & \(2 L_{w}=h\) \\
\(L_{u}=L_{v}=\frac{h}{(0.177+0.000823 h)^{1.2}}\) & \(L_{u}=2 L_{v}=\frac{h}{(0.177+0.000823 h)^{1.2}}\) \\
\hline
\end{tabular}

The turbulence intensities are given below, where \(W_{20}\) is the wind speed at 20 feet (6 \(\mathrm{m})\). Typically for light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30 knots, and for severe turbulence, the wind speed is 45 knots.
\[
\begin{aligned}
& \sigma_{w}=0.1 W_{20} \\
& \frac{\sigma_{u}}{\sigma_{w}}=\frac{\sigma_{v}}{\sigma_{w}}=\frac{1}{(0.177+0.000823 h)^{0.4}}
\end{aligned}
\]

The turbulence axes orientation in this region is defined as follows:
- Longitudinal turbulence velocity, \(u_{g}\), aligned along the horizontal relative mean wind vector
- Vertical turbulence velocity, \(w_{g}\), aligned with vertical.

At this altitude range, the output of the block is transformed into body coordinates.

\section*{Medium/High Altitudes (Altitude \(\mathbf{>} \mathbf{2 0 0 0}\) feet)}

For medium to high altitudes the turbulence scale lengths and intensities are based on the assumption that the turbulence is isotropic. In the military references, the scale lengths are represented by the following equations:
\begin{tabular}{|l|l|}
\hline MIL-F-8785C & MIL-HDBK-1797 \\
\hline\(L_{u}=L_{v}=L_{w}=1750 \mathrm{ft}\) & \(L_{u}=2 L_{v}=2 L_{w}=1750 \mathrm{ft}\) \\
\hline
\end{tabular}

The turbulence intensities are determined from a lookup table that provides the turbulence intensity as a function of altitude and the probability of the turbulence intensity being exceeded. The relationship of the turbulence intensities is represented in the following equation: \(\sigma_{u}=\sigma_{v}=\sigma_{w}\).

The turbulence axes orientation in this region is defined as being aligned with the body coordinates.

\section*{Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)}

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates are determined by linearly interpolating between the value from the low altitude model at 1000 feet transformed from mean horizontal wind coordinates to body coordinates and the value from the high altitude model at 2000 feet in body coordinates.

\section*{Dialog Box}
\begin{tabular}{|l}
\hline 图 Function Block Parameters: Dryden Wind Turbulence Model (Discrete (\(+\ldots\)... \\
Wind Turbulence Model (mask) (link) \\
Generate atmospheric turbulence. White noise is passed through a filter to \\
give the turbulence the specified velocity spectra. \\
Medium/high altitude scale lengths from the specifications are 762 m \\
(2500 ft) for Von Karman turbulence and 533.4 m (1750 ft) for Dryden \\
turbulence. \\
Parameters \\
Units: Metric (MKS) \\
Specification: MIL-F-8785C \\
Model type: Discrete Dryden (+q +r) \\
Wind speed at 6 m defines the low-altitude intensity (\(\mathrm{m} / \mathrm{s}\)): \\
\hline 15 \\
Wind direction at 6 m (degrees clockwise from north): \\
\hline 0 \\
Probability of exceedance of high-altitude intensity: \(1 \mathbf{1 0}^{\wedge}-2\) - Light \\
Scale length at medium/high altitudes (m): \\
\hline 533.4 \\
Wingspan (m): \\
\hline 10 \\
Band limited noise and discrete filter sample time (sec): \\
\hline 0.1 \\
Noise seeds [ug vg wg pg]: \\
\hline 23341233422334323344] \\
\hline Turbulence on \\
\hline Apply \\
\hline
\end{tabular}

\section*{Units}

Define the units of wind speed due to the turbulence.
\begin{tabular}{|l|l|l|l|}
\hline Units & Wind Velocity & Altitude & Airspeed \\
\hline Metric (MKS) & Meters/second & Meters & Meters/second \\
\hline \begin{tabular}{l}
English (Velocity \\
in ft/s)
\end{tabular} & Feet/second & Feet & Feet/second \\
\hline \begin{tabular}{l}
English (Velocity \\
in kts)
\end{tabular} & Knots & Feet & Knots \\
\hline
\end{tabular}

\section*{Specification}

Define which military reference to use. This affects the application of turbulence scale lengths in the lateral and vertical directions

\section*{Model type}

Select the wind turbulence model to use:
\begin{tabular}{|c|c|}
\hline Continuous Von Karman (\(+\mathrm{q}-\mathrm{r}\)) & Use continuous representation of Von Kármán velocity spectra with positive vertical and negative lateral angular rates spectra. \\
\hline Continuous Von Karman (+q +r) & Use continuous representation of Von Kármán velocity spectra with positive vertical and lateral angular rates spectra. \\
\hline Continuous Von Karman (-q +r) & Use continuous representation of Von Kármán velocity spectra with negative vertical and positive lateral angular rates spectra. \\
\hline Continuous Dryden (+q -r) & Use continuous representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra. \\
\hline Continuous Dryden (+ q +r) & Use continuous representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra. \\
\hline Continuous Dryden (-q +r) & Use continuous representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra. \\
\hline Discrete Dryden (+q -r) & Use discrete representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra. \\
\hline Discrete Dryden (+q +r) & Use discrete representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra. \\
\hline Discrete Dryden (-q +r) & Use discrete representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra. \\
\hline
\end{tabular}

The Discrete Dryden selections conform to the transfer function descriptions.

\section*{Wind speed at 6 m defines the low altitude intensity}

The measured wind speed at a height of 6 meters (20 feet) provides the intensity for the low-altitude turbulence model.

\section*{Wind direction at 6 m (degrees clockwise from north)}

The measured wind direction at a height of 6 meters (20 feet) is an angle to aid in transforming the low-altitude turbulence model into a body coordinates.

\section*{Probability of exceedance of high-altitude intensity}

Above 2000 feet, the turbulence intensity is determined from a lookup table that gives the turbulence intensity as a function of altitude and the probability of the turbulence intensity's being exceeded.

\section*{Scale length at medium/high altitudes}

The turbulence scale length above 2000 feet is assumed constant, and from the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density asymptote and gust load.

\section*{Wingspan}

The wingspan is required in the calculation of the turbulence on the angular rates.

\section*{Band-limited noise and discrete filter sample time (sec)}

The sample time at which the unit variance white noise signal is generated and at which the discrete filters are updated.

\section*{Noise seeds}

There are four random numbers required to generate the turbulence signals, one for each of the three velocity components and one for the roll rate. The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from the shaping filters for the vertical and lateral velocities.

\section*{Turbulence on}

Selecting the check box generates the turbulence signals.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
First & scalar & Contains the altitude, in units selected. \\
Second & scalar & Contains the aircraft speed, in units selected. \\
Third & 3-by-3 matrix & Contains the NED direction cosine matrix. \\
Output & Dimension Type & Description \\
First & Three-element signal & \begin{tabular}{l}
Contains the turbulence velocities, in the \\
selected units.
\end{tabular} \\
Second & Three-element signal & \begin{tabular}{l}
Contains the turbulence angular rates, in \\
radians per second.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The "frozen turbulence field" assumption is valid for the cases of mean-wind velocity and the root-mean-square turbulence velocity, or intensity, is small relative to the aircraft's ground speed.

The turbulence model describes an average of all conditions for clear air turbulence because the following factors are not incorporated into the model:
- Terrain roughness
- Lapse rate
- Wind shears
- Mean wind magnitude
- Other meteorological factions (except altitude)

\section*{References}
U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., "Background Information and User Guide for MIL-F-8785B(ASG), `Military Specification-Flying Qualities of Piloted Airplanes'," AD869856, Cornell Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series, 1988.

Ly, U., Chan, Y., "Time-Domain Computation of Aircraft Gust Covariance Matrices," AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, Danvers, Massachusetts, August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., "Background Information and User Guide for MIL-F-8785C, `Military Specification-Flying Qualities of Piloted Airplanes'," ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., "A Standard Kinematic Model for Flight Simulation at NASA-Ames," NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., "Simulation of Atmospheric Turbulent Gusts and Gust Gradients," AIAA Paper 81-0300, Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981.

Yeager, J., "Implementation and Testing of Turbulence Models for the F18-HARV Simulation," NASA CR-1998-206937, Lockheed Martin Engineering \& Sciences, March 1998.

\section*{See Also}

Dryden Wind Turbulence Model (Continuous)
Von Karman Wind Turbulence Model (Continuous)
Discrete Wind Gust Model
Wind Shear Model

\section*{Dynamic Pressure}

Compute dynamic pressure using velocity and air density

\section*{Library}

\section*{Flight Parameters}

The Dynamic Pressure block computes dynamic pressure.
Dynamic pressure is defined as
\[
\bar{q}=\frac{1}{2} \rho V^{2}
\]
where P is air density and \(V\) is velocity.

\section*{Dialog Box}
\begin{tabular}{|l|l|}
\hline Dunction Block Parameters: Dynamic Pressure \\
Dynamic Pressure (mask) (link) \\
Compute dynamic pressure using velocity and air density. \\
& OK Cancel
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
\hline First & Vector & Contains the velocity. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline Second & & Contains the air density. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the dynamic pressure. \\
\hline
\end{tabular}

\section*{Examples}

See the Airframe subsystem in aeroblk_HL20 for an example of this block.

\section*{See Also}

Aerodynamic Forces and Moments
Mach Number

\section*{Earth Nutation}

Implement Earth nutation

\section*{Library}

Environment/Celestial Phenomena

For a given Julian date, the Earth Nutation block implements the International Astronomical Union (IAU) 1980 nutation series. The block uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

Tip As Julian date input for the block, you can use the Julian Date Conversion block or the Aerospace Toolbox juliandate function to calculate the Julian date. You can also calculate your own Julian date and input it using the Constant block.

\section*{Dialog Box}

\section*{Epoch}

Select one of the following:
- Julian date

Julian date to calculate the Earth nutation. When this option is selected, the block has one input port.
- TO and elapsed Julian time

Julian date, specified by two block inputs:
- A fixed starting epoch (TO).
- Variable elapsed time between T0 and the desired model simulation time.

T0 plus the variable elapsed time cannot exceed the maximum Julian date for the specified Ephemerides.

\section*{Ephemeris model}

Select one of the following ephemerides models defined by the Jet Propulsion Laboratory.
\begin{tabular}{|l|l|}
\hline Ephemerides Model & Description \\
\hline DE405 & \begin{tabular}{l}
Released in 1998. This ephemerides takes into account the Julian \\
date range 2305424.50 (December 9, 1599) to 2525008.50 (February \\
20, 2201). \\
This block implements these ephemerides with respect to the
\end{tabular} \\
& \begin{tabular}{l}
International Celestial Reference Frame version 1.0, adopted in \\
1998.
\end{tabular} \\
\hline DE421 & \begin{tabular}{l}
Released in 2008. This ephemerides takes into account the Julian \\
date range 2414992.5 (December 4, 1899) to 2469808.5 (January 2, \\
2050). \\
This block implements these ephemerides with respect to the
\end{tabular} \\
\hline International Celestial Reference Frame version 1.0, adopted in \\
1998.
\end{tabular}

Note: This block requires that you download ephemeris data with the installer. Click the Get data button to start the installer. For more information, see aeroDataPackage.

\section*{Action for out of range input}

Specify the block behavior when the block inputs are out of range.
\begin{tabular}{|l|l|}
\hline Action & Description \\
\hline None & No action. \\
\hline Warning & \begin{tabular}{l}
Warning in the MATLAB Command Window, model \\
simulation continues.
\end{tabular} \\
\hline Error (default) & \begin{tabular}{l}
MATLAB returns an exception, model simulation \\
stops.
\end{tabular} \\
\hline
\end{tabular}

\section*{Calculate rates}

Select this check box to calculate the rate of the Earth nutation and add a second block output.

\section*{Inputs and Outputs}

\begin{tabular}{lll}
Input & Dimension Type & \begin{tabular}{l}
Description \\
See the Ephemerides parameter for the minimum \\
and maximum Julian date.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
First & Vector & \begin{tabular}{l}
Earth nutation in longitude \((\Delta \Psi)\) and obliquity \((\Delta \varepsilon)\). \\
Units are radians.
\end{tabular} \\
\begin{tabular}{l}
Second \\
(Optional)
\end{tabular} & Vector & \begin{tabular}{l}
Earth nutation angular rate for the longitude \(\left(\Delta \Psi_{\mathrm{dot}}\right)\) \\
and obliquity \(\left(\Delta \varepsilon_{\mathrm{dot}}\right)\). Units are radians/day.
\end{tabular}
\end{tabular}

\section*{References}

Folkner, W. M., J. G. Williams, D. H. Boggs, "The Planetary and Lunar Ephemeris DE 421," IPN Progress Report 42-178, 2009.

Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.

\section*{See Also}

Direction Cosine Matrix ECI to ECEF | Julian Date Conversion \| Moon Libration | Planetary Ephemeris

\section*{External Web Sites}
- http://ssd.jpl.nasa.gov/?planet_eph_export

\section*{ECEF Position to LLA}

Calculate geodetic latitude, longitude, and altitude above planetary ellipsoid from Earthcentered Earth-fixed (ECEF) position

\section*{Library}

Utilities/Axes Transformations

\section*{Description}

The ECEF Position to LLA block converts a 3-by-1 vector of ECEF position (\(\bar{p}\)) into geodetic latitude \((\bar{\mu})\), longitude \((\bar{l})\), and altitude \((\bar{h})\) above the planetary ellipsoid.

The ECEF position is defined as
\[
\bar{p}=\left[\begin{array}{l}
\bar{p}_{x} \\
\bar{p}_{y} \\
\bar{p}_{z}
\end{array}\right]
\]

Longitude is calculated from the ECEF position by
\[
\iota=\operatorname{atan}\left(\frac{p_{y}}{p_{x}}\right)
\]

Geodetic latitude \((\bar{\mu})\) is calculated from the ECEF position using Bowring's method, which typically converges after two or three iterations. The method begins with an initial guess for geodetic latitude \((\bar{\mu})\) and reduced latitude \((\bar{\beta})\). An initial guess takes the form:
\[
\begin{aligned}
& \bar{\beta}=\operatorname{atan}\left(\frac{p_{z}}{(1-f) s}\right) \\
& \bar{\mu}=\operatorname{atan}\left(\frac{p_{z}+\frac{e^{2}(1-f)}{\left(1-e^{2}\right)} R(\sin \beta)^{3}}{s-e^{2} R(\cos \beta)^{3}}\right)
\end{aligned}
\]
where \(R\) is the equatorial radius, \(f\) the flattening of the planet, \(e^{2}=1-(1-f)^{2}\), the square of first eccentricity, and
\[
s=\sqrt{p_{x}^{2}+p_{y}^{2}}
\]

After the initial guesses are calculated, the reduced latitude \((\bar{\beta})\) is recalculated using
\[
\beta=\operatorname{atan}\left(\frac{(1-f) \sin \mu}{\cos \mu}\right)
\]
and geodetic latitude \((\bar{\mu})\) is reevaluated. This last step is repeated until \(\bar{\mu}\) converges.

The altitude \((\bar{h})\) above the planetary ellipsoid is calculated with
\[
h=s \cos \mu+\left(p_{z}+e^{2} N \sin \mu\right) \sin \mu-N
\]
where the radius of curvature in the vertical prime \((\bar{N})\) is given by
\[
N=\frac{R}{\sqrt{1-e^{2}(\sin \mu)^{2}}}
\]

\section*{Dialog Box}

Function Block Parameters: ECEF Position to LLA

ECEF to LLA (mask) (link)
Calculate geodetic latitude, longitude, and altitude from Earth Centered Earth Fixed (ECEF) position.

Parameters
Planet model: Custom
Flattening:
1/298.257223563
Equatorial radius of planet:
6378137

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|l|l|}
\hline Units & Position & Equatorial Radius & Altitude \\
\hline Metric (MKS) & Meters & Meters & Meters \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Units & Position & Equatorial Radius & Altitude \\
\hline English & Feet & Feet & Feet \\
\hline
\end{tabular}

This option is only available when Planet model is set to Earth (WGS84).

\section*{Planet model}

Specifies the planet model to use, Custom or Earth (WGS84).

\section*{Flattening}

Specifies the flattening of the planet.
This option is available only with Planet model set to Custom.

\section*{Equatorial radius of planet}

Specifies the radius of the planet at its equator. The equatorial radius units should be the same as the desired units for ECEF position.

This option is available only with Planet model set to Custom.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & 3-by-1 vector & Contains the position in ECEF frame. \\
Output & Dimension Type & Description \\
First & 2-by-1 vector & \begin{tabular}{l}
Contains the geodetic latitude and longitude, in \\
degrees.
\end{tabular} \\
Second & Scalar & \begin{tabular}{l}
Contains the altitude above the planetary \\
ellipsoid, in the same units as the ECEF \\
position.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

This implementation generates a geodetic latitude that lies between \(\pm 90\) degrees, and longitude that lies between \(\pm 180\) degrees. The planet is assumed to be ellipsoidal. By setting the flattening to 0 , you model a spherical planet.

The implementation of the ECEF coordinate system assumes that its origin lies at the center of the planet, the \(x\)-axis intersects the prime (Greenwich) meridian and the equator, the \(z\)-axis is the mean spin axis of the planet (positive to the north), and the \(y\) axis completes the right-handed system.

\section*{References}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA Education Series, Reston, Virginia, 2000.
"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.

\section*{See Also}

See "About Aerospace Coordinate Systems" on page 2-11.
Direction Cosine Matrix ECEF to NED
Direction Cosine Matrix ECEF to NED to Latitude and Longitude
Geocentric to Geodetic Latitude
LLA to ECEF Position
Radius at Geocentric Latitude

\section*{ECI Position to LLA}

Convert Earth-centered inertial (ECI) coordinates to geodetic latitude, longitude, altitude (LLA) coordinates

\section*{Library}

Utilities/Axes Transformations

The ECI Position to LLA block converts Earth-centered inertial (ECI) position coordinates to geodetic latitude, longitude, altitude (LLA) coordinates, based on the specified reduction method and Universal Coordinated Time (UTC), for the specified time and geophysical data.

\section*{Dialog Box}

\section*{Reduction}

Reduction method to convert the coordinates. Select one of the following:
- IAU-76/FK5

Reduce the calculation using the International Astronomical Union (IAU)-76/ Fifth Fundamental Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference coordinate system for the conversion is FK5.

> Note: This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to reduce the calculation. This model and theory are no longer current, but the software provides this reduction method for existing implementations. Because of the polar motion approximation that this reduction method uses, the block calculates the transformation matrix rather than the direction cosine matrix.
- IAU-2000/2006

Reduce the calculation using the International Astronomical Union (IAU)-2000/2006 reference system. Choose this reduction method if the reference coordinate system for the conversion is IAU-2000. This reduction method uses the P03 precession model to reduce the calculation.

\section*{Year}

Specify the year used to calculate the Universal Coordinated Time (UTC) date. Enter a double value that is a whole number greater than 1, such as 2013.

\section*{Month}

Specify the month used to calculate the UTC date. From the list, select the month from January to December.

\section*{Day}

Specify the day used to calculate the UTC date. From the list, select the day from 1 to 31.

\section*{Hour}

Specify the hour used to calculate the UTC date. Enter a double value that is a whole number from 0 to 24 .

\section*{Minutes}

Specify the minutes used to calculate the UTC date. Enter a double value that is a whole number from 0 to 60.

\section*{Seconds}

Specify the seconds used to calculate the UTC date. Enter a double value that is a whole number from 0 to 60.

\section*{Time Increment}

Specify the time increment between the specified date and the desired model simulation time. The block adjusts the calculated direction cosine matrix to take into
account the time increment from model simulation. For example, selecting Day and connecting a simulation timer to the port means that each time increment unit is one day. The block adjusts its calculation based on that simulation time.

This parameter corresponds to the fifth block input, the clock source.
Possible values are Day, Hour, Min, Sec, and None. If you select None, the calculated Julian date does not take into account the model simulation time. Selecting this option removes the fifth block input.

\section*{Action for out of range input}

Specify the block behavior when the block inputs are out of range.
\begin{tabular}{|l|l|}
\hline Action & Description \\
\hline None & No action. \\
\hline Warning & \begin{tabular}{l}
Warning in the MATLAB Command Window, model \\
simulation continues.
\end{tabular} \\
\hline Error (default) & \begin{tabular}{l}
MATLAB returns an exception, model simulation \\
stops.
\end{tabular} \\
\hline
\end{tabular}

\section*{Higher accuracy parameters}

Select this check box to enable the following inputs. These inputs let you better control the conversion result. See "Inputs and Outputs" on page 4-303 for a description.

X
\(\Delta U T 1\)
\(\Delta A T\)
[xp,yp]
[\(\Delta \delta \Psi, \Delta \delta \varepsilon]\) or \([\mathrm{d} X, \mathrm{~d} Y]\)
day

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|l|l|}
\hline Units & Position & Equatorial Radius & Altitude \\
\hline Metric (MKS) & Meters & Meters & Meters \\
\hline English & Feet & Feet & Feet \\
\hline
\end{tabular}

This option is available only when Planet model is set to Earth (WGS84).

\section*{Earth model}

Specifies the planet model to use: Custom or WGS84.

\section*{Flattening}

Specifies the flattening of the planet. This option is available only with Earth model Custom.

\section*{Equatorial radius}

Specifies the radius of the planet at its equator. This option is available only with Earth model Custom.

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline First & 3-by-1 element vector & \(X\), position in ECI coordinates. \\
\hline Second (Optional) & Scalar & \(\Delta U T 1\), difference between UTC and Universal Time (UT1), in seconds, for which the function calculates the direction cosine or transformation matrix, for example, 0.234. \\
\hline Third (Optional) & Scalar & \(\triangle A T\), difference between International Atomic Time (IAT) and UTC, in seconds, for which the function calculates the direction cosine or transformation matrix, for example, 32. \\
\hline Fourth (Optional) & 1-by-2 array & [xp,yp], polar displacement of the Earth, in radians, from the motion of the Earth crust, along the \(x\) - and \(y\)-axes, for example, [-0.0682e-5 0.1616e-5]. \\
\hline Fifth (Optional) & 1-by-2 array & \begin{tabular}{l}
- If reduction method is IAU-2000/2006, this input is the adjustment to the location of the Celestial Intermediate Pole (CIP), specified in radians. This location (\([\mathrm{d} X, \mathrm{~d} Y]\)) is along the \(x\) - and \(y\)-axes, for example, [-0.2530e-6 -0.0188e-6]. \\
- If reduction method is IAU-76/FK5, this input is the adjustment to the longitude (\([\Delta \delta \Psi, \Delta \delta \varepsilon]\)), specified in radians, for example, \([-0.2530 \mathrm{e}-6-0.0188 \mathrm{e}-6]\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
& & \begin{tabular}{l}
For historical values, see the International \\
Earth Rotation and Reference Systems Service \\
website (http: / /www.iers.org) and navigate \\
to the Earth Orientation Data Data/Products \\
page.
\end{tabular} \\
Sixth & Scalar & \begin{tabular}{l}
Time increment, for example, the Clock block.
\end{tabular} \\
& & \begin{tabular}{l}
If the Higher accuracy parameters check \\
box is cleared and the Time Increment \\
parameter is a value other than None, the block \\
has no input.
\end{tabular} \\
\hline Output & Dimension Type & \begin{tabular}{l}
Description
\end{tabular} \\
\hline First & 3-by-1 element vector & \begin{tabular}{l}
Original position vector in geodetic LLA \\
coordinates, in degrees.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

LLA to ECI Position

\section*{More About}
- http://www.iers.org

\section*{EGM96 Geoid}

Calculate geoid height as determined from EGM96 Geopotential Model

Note: EGM96 Geoid will be removed in a future version. Use Geoid Height instead.

\section*{Library}

Environment/Gravity

The EGM96 Geoid block calculates the geoid height as determined from the EGM96 Geopotential Model. The block interpolates the geoid heights from a 15 minute grid of point values in the tide-free system. It uses the EGM96 Geopotential Model to degree and order 360. The geoid undulations are with respect to the WGS84 ellipsoid.

The interpolation scheme wraps over the poles to allow for geoid height calculations at and near these locations.

\section*{Dialog Box}

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|}
\hline Units & Height \\
\hline Metric (MKS) & Meters \\
\hline English & Feet \\
\hline
\end{tabular}

\section*{Data type}

Specify the data type of the input and output signals. From the list, select double or single.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Scalar & \begin{tabular}{l}
Contains geocentric latitude in degrees, where \\
north latitude is positive, and south latitude is
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
Input & Dimension Type & \begin{tabular}{l}
Description \\
negative. Input latitude must be of type single \\
or double. If latitude is not in the range from \\
-90 to 90 , the block wraps it to be within the \\
range.
\end{tabular} \\
Second & Scalar & \begin{tabular}{l}
Contains geocentric longitude in degrees, where \\
east longitude is positive in the range from 0 to \\
360. Input longitude must be of type single or \\
double. If longitude is not in the range from 0 to \\
360, the block wraps it to be within the range.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
First & Scalar & Contains the geoid height, in meters.
\end{tabular}

\section*{Limitations}

This block has the limitations of the 1996 Earth Geopotential Model. For more information, see http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/ egm96.html.

The WGS84 EGM96 geoid undulations have an error range of \(+/-0.5\) to \(+/-1.0\) meters worldwide.

\section*{References}
"Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems", NIMA TR8350.2.
"The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96", NASA/TP-1998-206861.

National Geospatial-Intelligence Agency Web site: http: / /earth-info.nga.mil/ GandG/wgs84/gravitymod/egm96/egm96.html

\section*{See Also}

WGS84 Gravity Model

\section*{Estimate Center of Gravity}

Calculate center of gravity location

\section*{Library}

Mass Properties

The Estimate Center of Gravity block calculates the center of gravity location and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity as a function of mass. The rate of change of center of gravity is a linear function of rate of change of mass.

\section*{Dialog Box}

\section*{Full mass}

Specifies the gross mass of the craft.

\section*{Empty mass}

Specifies the empty mass of the craft.

\section*{Full center of gravity}

Specifies the center of gravity at gross mass of the craft.

\section*{Empty center of gravity}

Specifies the center of gravity at empty mass of the craft.

\section*{Inputs and Outputs}
\begin{tabular}{ll}
Input \(\quad\) Dimension Type & Description \\
\hline First & Contains the mass. \\
Second & Contains the rate of change of mass.
\end{tabular}
\begin{tabular}{ll}
Output & Dimension Type \\
First & Description \\
Second & Contains the center of gravity location. \\
& \begin{tabular}{l}
Contains the rate of change of center of gravity \\
location.
\end{tabular}
\end{tabular}

\section*{See Also}

Aerodynamic Forces and Moments
Estimate Inertia Tensor
Moments About CG Due to Forces

\section*{Estimate Inertia Tensor}

Calculate inertia tensor

\section*{Library}

Mass Properties

The Estimate Inertia Tensor block calculates the inertia tensor and the rate of change of the inertia tensor.

Linear interpolation is used to estimate the inertia tensor as a function of mass. The rate of change of the inertia tensor is a linear function of rate of change of mass.

\section*{Dialog Box}
\begin{tabular}{l}
Function Block Parameters: Estimate Inertia Tensor \\
Estimate Inertia Tensor (mask) (link) \\
Calculate the inertia tensor. Linear interpolation is used to determine \\
inertia tensor as a function of mass. \\
Parameters \\
Full mass: \\
\hline 2 \\
Empty mass: \\
\begin{tabular}{l}
Full inertia matrix: \\
eye(3) \\
Empty inertia matrix: \\
eye(3)/2 \\
\hline Cancel \\
Help \\
Apply \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Full mass}

Specifies the gross mass of the craft.

\section*{Empty mass}

Specifies the empty mass of the craft.

\section*{Full inertia matrix}

Specifies the inertia tensor at gross mass of the craft.

\section*{Empty inertia matrix}

Specifies the inertia tensor at empty mass of the craft.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
\hline First & Contains the mass. \\
Second & & Contains the rate of change of mass. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the inertia tensor. \\
Second & & Contains the rate of change of inertia tensor.
\end{tabular}

\section*{See Also}

Estimate Center of Gravity
Symmetric Inertia Tensor

\section*{Flat Earth to LLA}

Estimate geodetic latitude, longitude, and altitude from flat Earth position

\section*{Library}

Utilities/Axes Transformations

The Flat Earth to LLA block converts a 3-by-1 vector of Flat Earth position \((\bar{p})\) into geodetic latitude \((\bar{\mu})\), longitude \((\bar{l})\), and altitude (\(h\)). The flat Earth coordinate system assumes the \(z\)-axis is downward positive. The estimation begins by transforming the flat Earth \(x\) and \(y\) coordinates to North and East coordinates. The transformation has the form of
\[
\left[\begin{array}{l}
N \\
E
\end{array}\right]=\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]
\]
where \((\bar{\psi})\) is the angle in degrees clockwise between the \(x\)-axis and north.
To convert the North and East coordinates to geodetic latitude and longitude, the radius of curvature in the prime vertical \(\left(R_{N}\right)\) and the radius of curvature in the meridian \(\left(R_{M}\right)\) are used. \(\left(R_{N}\right)\) and (\(R_{M}\)) are defined by the following relationships:
\[
\begin{aligned}
& R_{N}=\frac{R}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \mu_{0}}} \\
& R_{M}=R_{N} \frac{1-\left(2 f-f^{2}\right)}{1-\left(2 f-f^{2}\right) \sin ^{2} \mu_{0}}
\end{aligned}
\]
where \((R)\) is the equatorial radius of the planet and \((\bar{f})\) is the flattening of the planet.

Small changes in the in latitude and longitude are approximated from small changes in the North and East positions by
\[
\begin{aligned}
& d \mu=\operatorname{atan}\left(\frac{1}{R_{M}}\right) d N \\
& d l=\operatorname{atan}\left(\frac{1}{R_{N} \cos \mu}\right) d E
\end{aligned}
\]

The output latitude and longitude are simply the initial latitude and longitude plus the small changes in latitude and longitude.
\[
\begin{aligned}
& \mu=\mu_{0}+d \mu \\
& \imath=\iota_{0}+d \iota
\end{aligned}
\]

The altitude is the negative flat Earth \(z\)-axis value minus the reference height \(\left(h_{r e f}\right)\).
\[
h=-p_{z}-h_{r e f}
\]

\section*{Dialog Box}
```

自 Function Block Parameters: Flat Earth to LLA
Flat Earth to LLA (mask) (link)
Estimate geodetic latitude, longitude, and altitude from flat Earth position. The flat Earth coordinate system assumes the $z$-axis is positive downwards.

```

\section*{Parameters}
```

Units: Metric (MKS)
Planet model: Earth (WGS84)
Initial geodetic latitude and longitude [deg]:
[010]
Direction of flat Earth $x$-axis (degrees clockwise from north):
0
OK Cancel Help Apply

```
```

Mal Function Block Parameters: Flat Earth to LLA
Flat Earth to LLA (mask) (link)
Estimate geodetic latitude, longitude, and altitude from flat Earth
position. The flat Earth coordinate system assumes the z-axis is
positive downwards.
Parameters
Planet model: Custom *
Flattening:
1/298.257223563
Equatorial radius of planet:
6378137
Initial geodetic latitude and longitude [deg]:
[0 10]
Direction of flat Earth x-axis (degrees clockwise from north):
0
OK Cancel Help Apply

```

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|l|l|}
\hline Units & Position & Equatorial Radius & Altitude \\
\hline Metric (MKS) & Meters & Meters & Meters \\
\hline English & Feet & Feet & Feet \\
\hline
\end{tabular}

This option is only available when Planet model is set to Earth (WGS84).

\section*{Planet model}

Specifies the planet model to use: Custom or Earth (WGS84).

\section*{Flattening}

Specifies the flattening of the planet. This option is only available with Planet model Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for flat Earth position. This option is only available with Planet model Custom.

\section*{Initial geodetic latitude and longitude}

Specifies the reference location, in degrees of latitude and longitude, for the origin of the estimation and the origin of the flat Earth coordinate system.

\section*{Direction of flat Earth x-axis (degrees clockwise from north)}

Specifies angle used for converting flat Earth x and y coordinates to North and East coordinates.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & \begin{tabular}{l}
3-by-1 vector \\
Second
\end{tabular} & \begin{tabular}{l}
Contains the position in flat Earth frame. \\
Contains the reference height from surface of \\
Earth to flat Earth frame with regard to Earth \\
frame, in same units as flat Earth position.
\end{tabular} \\
Output & Dimension Type & \begin{tabular}{l}
Description
\end{tabular} \\
First & 2-by-1 vector & \begin{tabular}{l}
Contains the geodetic latitude and longitude, in \\
degrees.
\end{tabular} \\
Second & Scalar & \begin{tabular}{l}
Contains the altitude above the input reference \\
altitude, in same units as flat Earth position.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

This estimation method assumes the flight path and bank angle are zero.
This estimation method assumes the flat Earth \(z\)-axis is normal to the Earth at the initial geodetic latitude and longitude only. This method has higher accuracy over small distances from the initial geodetic latitude and longitude, and nearer to the equator. The longitude will have higher accuracy the smaller the variations in latitude. Additionally, longitude is singular at the poles.

\section*{References}

Etkin, B., Dynamics of Atmospheric Flight, John Wiley \& Sons, New York, 1972.
Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second Edition, John Wiley \& Sons, New York, 2003.

\section*{See Also}

Direction Cosine Matrix ECEF to NED
Direction Cosine Matrix ECEF to NED to Latitude and Longitude
ECEF Position to LLA
Geocentric to Geodetic Latitude
LLA to ECEF Position
Radius at Geocentric Latitude

\title{
FlightGear Preconfigured 6DoF Animation
}

\author{
Connect model to FlightGear flight simulator
}

\section*{Library}

Animation/Flight Simulator Interfaces

The FlightGear Preconfigured 6DoF Animation block lets you drive position and attitude values to a FlightGear flight simulator vehicle given double-precision values for longitude (1), latitude (\(\mu\)), altitude (h), roll (\#), pitch (\(\theta\)), and yaw (\(\psi\)), respectively.

The block is a masked subsystem containing principally a Pack net_fdm Packet for FlightGear block set for 6DoF inputs, a Send net_fdm Packet to FlightGear block, and a Simulation Pace block. To access the full capabilities of these blocks, use the individual corresponding blocks from the Aerospace Blockset library.

The block is additionally configured as a SimViewingDevice, so that if you generate code for your model using the Simulink Coder product and connect to the running target code using theSimulink Coder External Mode available from the model toolbar, then the Simulink software can obtain the data from the target on the fly and transmit position and attitude data to FlightGear. For more information, see "Sim Viewing Devices in External Mode".

This block does not produce deployable code, but it can be used with Simulink Coder external mode as a SimViewingDevice.

\section*{Dialog Box}
Wi Sink Block Parameters: FlightGear Preconfigured 6DoF Animation
FlightGearQuick6DoFAnimation (mask) (link)
Drive position and attitude values to a FlightGear Flight Simulator
vehicle given double precision values for longitude, latitude, altitude,
roll, pitch, and yaw respectively. Units are degrees west/north for
longitude and latitude, meters above mean sea level for altitude, and
radians for attitude values.
This block is a masked subsystem containing principally a FlightGear
Pack Net FDM block set for 6DoF inputs, a FlightGear Send Net FDM
block, and a Simulation Pace block. To access the full capabilities of
these blocks, use the individual corresponding blocks from the
Aerospace Blockset library.
\begin{tabular}{l}
Use "Look under mask" from this block's context menu to see the \\
blocks under the mask. \\
Parameters \\
FlightGear version: v3.0 \\
Destination IP address: \\
127.0.0.1 \\
Destination port: \\
5502 \\
Sample time (-1 for inherited): \\
\(1 / 30\)
\end{tabular}
OK Cancel

\section*{FlightGear version}

Note: If you are using a FlightGear version older than 2.0, the model displays a notification from the Simulink Upgrade Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more information, see "Supported FlightGear Versions".

\section*{Destination IP address}

Specify your destination IP address.

\section*{Destination port}

Specify your destination port.

\section*{Sample time}

Specify the sample time (-1 for inherited).

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
First & Vector & \begin{tabular}{l}
Contains the longitude, latitude, altitude, roll, \\
pitch, and yaw, in double-precision. Units are \\
degrees west/north for longitude and latitude, \\
meters above mean sea level for altitude, and \\
radians for attitude values.
\end{tabular}
\end{tabular}

\section*{Reference}

Bowditch, N., American Practical Navigator, An Epitome of Navigation, US Navy Hydrographic Office, 1802.

\section*{See Also}

Generate Run Script
Pack net_fdm Packet for FlightGear
Send net_fdm Packet to FlightGear
Simulation Pace

\section*{Force Conversion}

Convert from force units to desired force units

\section*{Library}

Utilities/Unit Conversions

The Force Conversion block computes the conversion factor from specified input force units to specified output force units and applies the conversion factor to the input signal.

The Force Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}

\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline lbf & Pound force \\
\hline N & Newtons \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the force in initial force units. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the force in final force units. \\
\hline
\end{tabular}

\section*{See Also}

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

\section*{Gain Scheduled Lead-Lag}

Implement first-order lead-lag with gain-scheduled coefficients

\section*{Library}

GNC/Controls

\section*{Description 症 (1+asy(1+bs)}

The Gain Scheduled Lead-Lag block implements a first-order lag of the form
\[
u=\frac{1+a s}{1+b s} e
\]
where \(e\) is the filter input, and \(u\) the filter output.
The coefficients \(a\) and \(b\) are inputs to the block, and hence can be made dependent on flight condition or operating point. For example, they could be produced from the "Lookup Table (n-D)" Simulink block.

\section*{Dialog Box}
```

M. Function Block Parameters: Gain Scheduled Lead-Lag
Gain Scheduled Lead-Lag (mask) (link)
Implement gain-scheduled first-order lead-lag of the form
[1+a.s]/[1+b.s]. Initial output is given by (x_initial+a.e)/b where
x_initial is the initial state defined in the mask dialog box. Note that b
should never be allowed to be zero.
Parameters
Initial state, x_initial:
0

```

\section*{Initial state, x_initial}

The initial internal state for the filter x_initial. Given this initial state, the initial output is given by
\[
\left.u\right|_{t=0}=\frac{x_{-} _i n i t i a l+a e}{b}
\]

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
First & & Contains the filter input. \\
Second & & Contains the numerator coefficient. \\
Third & & Contains the denominator coefficient. \\
\hline Output & Dimension Type & Description \\
First & & Contains the filter output.
\end{tabular}

\section*{Generate Run Script}

Generate FlightGear run script on current platform

\section*{Library}

Animation/Flight Simulator Interfaces

The Generate Run Script block generates a customized FlightGear run script on the current platform.

To generate the run script, fill in the required information in the dialog box fields, then click Generate Script.

In the dialog box, fields marked with an asterisk (*) are evaluated as MATLAB expressions. The other fields are treated as literal text.

\section*{For More Information About FlightGear}

See "Create a FlightGear Run Script" on page 2-33.

\section*{Dialog Box}

This figure is the FlightGear pane of the Generate Run Script block dialog box;
```

D Block Parameters: Generate Run Script
x
Generate FlightGear Run Script
Generate a custom FlightGear run script file on the current
platform.
To generate the run script, fill in the information then press
Generate Script. Items marked with an asterisk (*) are
evaluated as MATLAB expressions, the rest of the fields are literal
text.
Parameters
Select target architecture: Default
Select FlightGear data flow: Send
Generate Script
FlightGear Network File
FlightGear geometry model name:
HL20
Airport ID:
KSFO
Runway ID:
10L
Initial altitude (ft)*:
7224
Initial heading (deg)*:
113
Offset distance (miles)*:
4.72
Offset azimuth (deg)*:
0

```

Here is the Network pane of the Generate Run Script block dialog box:

The following figure is the File pane of the Generate Run Script block dialog box:

\section*{Select target architecture}

From the list, select the target platform on which you want to execute the run script. This platform can differ from the platform on which you create the run script. Select Default if you want to generate a run script to run on the platform from which you create the run script.
- Win32
- Win64
- Linux
- Mac

\section*{Select FlightGear data flow}

From the list, select the direction of the data flow:
- Send

Creates the run script to set up the sending of the net_fdm control model from Simulink to FlightGear.
- Receive

Creates the run script to set up the receiving of the net_ctrl control model from FlightGear to Simulink.
- Send-Receive

Creates the run script to set up FlightGear to receive and broadcast data to and from Simulink.

Note: Selecting this option does not mean that you receive the same data that you sent (for example, with the Send-Receive option, you might not see control surface position data). With this option, you see primarily user input (such as joystick) and environmental data.

\section*{FlightGear geometry model name}

Specify the name of the folder containing the model geometry that you want in the FlightGear \data \Aircraft folder.

\section*{Airport ID}

Specify the airport ID. The list of supported airports is available in the FlightGear interface, under Location.

\section*{Runway ID}

Specify the runway ID.
Initial altitude (ft)*
Specify the initial altitude of the aircraft, in feet. The block evaluates the value as a MATLAB expression.

\section*{Initial heading (deg)*}

Specify the initial heading of the aircraft, in degrees. The block evaluates the value as a MATLAB expression.

\section*{Offset distance (miles)*}

Specify the offset distance of the aircraft from the airport, in miles. The block evaluates the value as a MATLAB expression.

\section*{Offset azimuth (deg)*}

Specify the offset azimuth of the aircraft, in degrees. The block evaluates the value as a MATLAB expression.

\section*{Destination/Origin IP address}

Specify the network IP address of the machine on which the FlightGear software runs.

\section*{Destination port}

Specify your network flight dynamics model (fdm) port. For more information, see the Send net_fdm Packet to FlightGear block reference.

\section*{Origin port}

Specify your network control (ctrl) port. For more information, see the Receive net_ctrl Packet from FlightGear block.

\section*{Network IP address}

Specify the network IP address of the machine on which the MATLAB software runs.

\section*{Output file name}

Specify the name of the output file. The file name is the name of the command that you use to start FlightGear with these initial parameters. Use these file extensions:
\begin{tabular}{|l|l|}
\hline Plafform & Extension \\
\hline Windows & .bat \\
\hline Linux and Mac OS &. sh \\
\hline
\end{tabular}

\section*{FlightGear base directory}

Specify the name of your FlightGear installation folder.

\section*{Generate Script}

Enter the correct information in the dialog box fields, then click Generate Script to generate a run script for FlightGear. Do not click this button until you have entered the correct information in the dialog box fields.

\section*{Examples}

See the asbhl20 example.

\section*{See Also}

\author{
FlightGear Preconfigured 6DoF Animation \\ Pack net_fdm Packet for FlightGear \\ Send net_fdm Packet to FlightGear \\ Receive net_ctrl Packet from FlightGear \\ Unpack net_ctrl Packet from FlightGear
}

\section*{Geocentric to Geodetic Latitude}

Convert geocentric latitude to geodetic latitude

\section*{Library}

Utilities/Axes Transformations

\section*{Description \\ }

The Geocentric to Geodetic Latitude block converts a geocentric latitude \((\lambda)\) into geodetic latitude (\(\mu\)). There are a number of geometric relationships that are used to calculate the geodetic latitude in this noniterative method. A number of angles and points are involved in the calculation, which are shown in following figure.

Given geocentric latitude \((\lambda)\) and the radius (\(r\)) from the center of the planet (O) to the center of gravity (P), this noniterative method starts by computing values for the point of \(r\) that intercepts the surface of the planet (S). By rearranging the equation for an ellipse, the horizontal coordinate, \(\left(x_{a}\right)\) is determined. When equatorial radius \((R)\), polar radius \(((1-f) R)\) and \(x_{a} \tan \lambda\), are substituted for semi-major axis, semi-minor axis and vertical coordinate \(\left(y_{a}\right)\), the resulting equation for \(x_{a}\) has the following form:
\[
x_{a}=\frac{(1-f) R}{\sqrt{\tan ^{2} \lambda+(1-f)^{2}}}
\]

To determine the geodetic latitude at \(\mathrm{S} \mu_{a}\), the equation for an ellipse with equatorial radius \((R)\), polar radius \(((1-f) R)\) is used again. This time it is used to define \(y_{a}\) in terms of \(x_{a}\).
\[
y_{a}=\sqrt{R^{2}-x_{a}^{2}}(1-f)
\]

Additionally, the relationship between geocentric latitude at the planet's surface and geodetic latitude is used.
\[
\mu_{a}=\operatorname{atan}\left(\frac{\tan \lambda}{(1-f)^{2}}\right)
\]

Using the relationship \(\tan \lambda=y_{a} / x_{a}\) and the two equations above, the resulting equation for \(\mu_{a}\) is obtained.
\[
\mu_{a}=\operatorname{atan}\left(\frac{\sqrt{R^{2}-x_{a}^{2}}}{(1-f) x_{a}}\right)
\]

The correct sign of \(\mu_{a}\) is determined by testing \(\lambda\) and if \(\lambda\) is less than zero \(\mu_{a}\) changes sign accordingly.

In order to calculate the geodetic latitude of P , a number of geometric relationships are required to be calculated. These calculations follow.

The radius \(\left(r_{a}\right)\) from the center of the planet (O) to the surface of the planet (S) is calculated by using trigonometric relationship.
\[
r_{a}=\frac{x_{a}}{\cos \lambda}
\]

The distance from S to P is defined by:
\[
l=r-r_{a}
\]

The angular difference between geocentric latitude and geodetic latitude at \(\mathrm{S}(\delta \lambda)\) is defined by:
\[
\delta \lambda=\mu_{a}-\lambda
\]

Using \(l\) and \(\delta \lambda\), the segment TP or the mean sea-level altitude (\(h\)) is estimated.
\[
h=l \cos \delta \lambda
\]

The equation for the radius of curvature in the Meridian \(\left(\rho_{a}\right)\) at \(\mu_{a}\) is
\[
\rho_{a}=\frac{R(1-f)^{2}}{\left(1-\left(2 f-f^{2}\right) \sin ^{2} \mu_{a}\right)^{3 / 2}}
\]

Using \(l, \delta \lambda, h\), and \(\rho_{a}\), the angular difference between geodetic latitude at \(\mathrm{S}(\mu)\) and geodetic latitude at \(\mathrm{P}\left(\mu_{a}\right)\) is defined as:
\[
\delta \mu=\operatorname{atan}\left(\frac{l \sin \delta \lambda}{\rho_{a}+h}\right)
\]

Subtracting \(\delta \mu\) from \(\mu_{a}\) then gives \(\mu\).
\[
\mu=\mu_{a}-\delta \mu
\]

\section*{Dialog Box}

```

I Function Block Parameters: Geocentric to Geodetic Latitude$x$
Geocentric to Geodetic Latitude (mask) (link)
Convert geocentric latitude to geodetic latitude. Geodetic latitude is computed using geocentric latitude and the radius from the center of the planet to the center of gravity.
Parameters
Planet model: Custom
Flattening:
1/298.257223563
Equatorial radius of planet:
6378137

```

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|l|}
\hline Units & \begin{tabular}{l}
Radius from CG to Center of \\
Planet
\end{tabular} & Equatorial Radius \\
\hline Metric (MKS) & Meters & Meters \\
\hline English & Feet & Feet \\
\hline
\end{tabular}

This option is only available when Planet model is set to Earth (WGS84).

\section*{Planet model}

Specifies the planet model to use: Custom or Earth (WGS84).

\section*{Flattening}

Specifies the flattening of the planet. This option is only available with Planet model set to Custom.

\section*{Equatorial radius of planet}

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for radius. This option is only available with Planet model set to Custom.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Scalar & \begin{tabular}{l}
Contains the geocentric latitude, in degrees. \\
Latitude values can be any value. However, \\
values of +90 and -90 may return unexpected \\
values because of singularity at the poles.
\end{tabular} \\
Second & Scalar & \begin{tabular}{l}
Contains the radius from center of the planet to \\
the center of gravity.
\end{tabular} \\
Output & Dimension Type & Description \\
First & Scalar & Contains the geodetic latitude, in degrees.
\end{tabular}

\section*{Assumptions and Limitations}

This implementation generates a geodetic latitude that lies between \(\pm 90\) degrees.

\section*{References}

\author{
Jackson, E. B., Manual for a Workstation-based Generic Flight Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April, 1995.
}

Hedgley, D. R., Jr., "An Exact Transformation from Geocentric to Geodetic Coordinates for Nonzero Altitudes," NASA TR R-458, March, 1976.

Clynch, J. R., "Radius of the Earth - Radii Used in Geodesy," Naval Postgraduate School, 2002, http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry 2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

\author{
See Also
}

ECEF Position to LLA
Flat Earth to LLA
Geodetic to Geocentric Latitude
LLA to ECEF Position

\section*{Geodetic to Geocentric Latitude}

Convert geodetic latitude to geocentric latitude

\section*{Library}

Utilities/Axes Transformations

The Geodetic to Geocentric Latitude block converts a geodetic latitude (\(\mu\)) into geocentric latitude \((\lambda)\). Geocentric latitude at the planet surface \(\left(\lambda_{s}\right)\) is defined by flattening \((f)\), and geodetic latitude in the following relationship.
\[
\lambda_{s}=\operatorname{atan}\left((1-f)^{2} \tan \mu\right)
\]

Geocentric latitude is defined by mean sea-level altitude (\(h\)), geodetic latitude, radius of the planet \(\left(r_{s}\right)\) and geocentric latitude at the planet surface in the following relationship.
\[
\lambda=\operatorname{atan}\left(\frac{h \sin \mu+r_{s} \sin \lambda_{s}}{h \cos \mu+r_{s} \cos \lambda_{s}}\right)
\]

\section*{Dialog Box}

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|ll|l|}
\hline Units & Altitude & Equatorial Radius \\
\hline Metric (MKS) & Meters & Meters \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|}
\hline Units & Altitude & Equatorial Radius \\
\hline English & Feet & Feet \\
\hline
\end{tabular}

This option is only available when Planet model is set to Earth (WGS84).

\section*{Planet model}

Specifies the planet model to use: Custom or Earth (WGS84).

\section*{Flattening}

Specifies the flattening of the planet. This option is only available with Planet model set to Custom.

\section*{Equatorial radius of planet}

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for altitude. This option is only available with Planet model set to Custom.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Scalar & \begin{tabular}{l}
Contains the geodetic latitude, in degrees. \\
Latitude values can be any value. However, \\
values of +90 and -90 may return unexpected \\
values because of singularity at the poles.
\end{tabular} \\
Second & Scalar & Contains the mean sea-level altitude (MSL). \\
Output & Dimension Type & Description \\
First & Scalar & Contains the geocentric latitude, in degrees.
\end{tabular}

\section*{Assumptions and Limitations}

This implementation generates a geocentric latitude that lies between \(\pm 90\) degrees.

\section*{Reference}

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

\section*{See Also}

\section*{ECEF Position to LLA}

Flat Earth to LLA
Geocentric to Geodetic Latitude
LLA to ECEF Position
Radius at Geocentric Latitude

\section*{Geoid Height}

Calculate undulations/height

\section*{Library}

Environment/Gravity

The Geoid Height block calculates the geoid height using the Geopotential model parameter. The block interpolates the geoid heights from a grid of point values in the tide-free system. It uses the specified geopotential model to degree and order 360 . The geoid undulations are relative to the WGS84 ellipsoid.

The interpolation scheme wraps over the poles to allow for geoid height calculations at and near these locations.

\section*{Dialog Box}

Function Block Parameters: Geoid Height
Geoid Height (mask) (link)
Calculates the geoid height as determined from a geopotential model. Geoid heights are interpolated from a grid of point values in the tidefree system, using the selected geopotential model.

EGM96 uses a 15-minute grid of point values, using EGM96 Geopotential Model to degree and order 360 .

EGM2008 uses a 2.5-minute grid of point values, using the EGM2008 Geopotential Model to degree and order 2159.

Geocentric latitude and longitude are entered in degrees.
Parameters
Units: Metric (MKS)
Geopotential model: EGM96 \(\rightarrow\) Get data
Data type: double
Action for out of range input: Warning

OK Cancel Help Apply

\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|}
\hline Units & Height \\
\hline Metric (MKS) & Meters \\
\hline English & Feet \\
\hline
\end{tabular}

\section*{Geopotential model}

From the list, select the geopotential model.
\begin{tabular}{|l|l|}
\hline Geopotential Model & Description \\
\hline EGM96 (Earth) & \begin{tabular}{l}
Default. EGM96 Geopotential Model to degree and order 360. \\
This model uses a 15-minute grid of point values in the tide-free \\
system. This block calculates geoid heights to an accuracy of \\
0.01 m for this model.
\end{tabular} \\
\hline EGM2008 (Earth) & \begin{tabular}{l}
EGM2008 Geopotential Model to degree and order 2159. This \\
model uses a 2.5-minute grid of point values in the tide-free \\
system. This block calculates geoid heights to an accuracy of \\
0.001 m for this model.
\end{tabular} \\
\hline Custom & \begin{tabular}{l}
Note: This block requires that you download geoid data for the \\
EGM2008 Geopotential Model with the installer. Click the Get \\
data button to start the installer. For more information, see \\
aeroDataPackage.
\end{tabular} \\
\hline & \begin{tabular}{l}
Custom geopotential model that you define in datafile. This \\
block calculates geoid heights to an accuracy of 0.01 m for \\
custom models.
\end{tabular} \\
\hline
\end{tabular}

\section*{Data type}

Specifies the data type of the input and output signals. From the list, select double or single.

\section*{Action}

String that defines action for out-of-range input. Specify one:
'Error'
'Warning' (default)
'None'

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Scalar & \begin{tabular}{l}
Contains geocentric latitude in degrees, where \\
north latitude is positive, and south latitude is
\end{tabular} \\
& &
\end{tabular}
\begin{tabular}{lll}
Input & Dimension Type & \begin{tabular}{l}
Description \\
negative. Input latitude must be of type single \\
or double. If latitude is not in the range from \\
-90 to 90 , the block wraps it to be within the \\
range.
\end{tabular} \\
Second & Scalar & \begin{tabular}{l}
Contains geocentric longitude in degrees, where \\
east longitude is positive in the range from 0 to \\
360. Input longitude must be of type single or \\
double. If longitude is not in the range from 0 to \\
360, the block wraps it to be within the range.
\end{tabular} \\
Output & Dimension Type & \begin{tabular}{l}
Description
\end{tabular} \\
N & Scalar & \begin{tabular}{l}
Contains the geoid height in selected length \\
units. The data type is the same as the latitude \\
in the first input.
\end{tabular}
\end{tabular}

\section*{Limitations}

This block has the limitations of the selected geopotential model.

\section*{References}

Vallado, D. A. "Fundamentals of Astrodynamics and Applications." McGraw-Hill, New York, 1997.

NIMA TR8350.2: "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems."

National Geospatial-Intelligence Agency Web site: http://earth-info.nga.mil/ GandG/publications/vertdatum.html

\author{
See Also
}

WGS84 Gravity Model, Spherical Harmonic Gravity Model

\section*{Horizontal Wind Model}

Transform horizontal wind into body-axes coordinates

\section*{Library}

Environment/Wind

The Horizontal Wind Model block computes the wind velocity in body-axes coordinates.
The wind is specified by wind speed and wind direction in Earth axes. The speed and direction can be constant or variable over time. The direction of the wind is in degrees clockwise from the direction of the Earth \(x\)-axis (north). The wind direction is defined as the direction from which the wind is coming. Using the direction cosine matrix (DCM), the wind velocities are transformed into body-axes coordinates.

\section*{Dialog Box}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|}
\hline Units & Wind Speed & Wind Velocity \\
\hline Metric (MKS) & Meters per second & Meters per second \\
\hline \begin{tabular}{l}
English (Velocity in ft/ \\
s)
\end{tabular} & Feet per second & Feet per second \\
\hline \begin{tabular}{l}
English (Velocity in \\
kts)
\end{tabular} & Knots & Knots \\
\hline
\end{tabular}

\section*{Wind speed source}

Specify source of wind speed:
\begin{tabular}{|l|l|}
\hline External & Variable wind speed input to block \\
\hline Internal & Constant wind speed specified in mask \\
\hline
\end{tabular}

Wind speed at altitude (\(\mathrm{m} / \mathrm{s}\))

Constant wind speed used if internal wind speed source is selected.

\section*{Wind direction source}

Specify source of wind direction:
\begin{tabular}{|l|l|}
\hline External & Variable wind direction input to block \\
\hline Internal & \begin{tabular}{l}
Constant wind direction specified in \\
mask
\end{tabular} \\
\hline
\end{tabular}

\section*{Wind direction at altitude (degrees clockwise from north)}

Constant wind direction used if internal wind direction source is selected. The direction of the wind is in degrees clockwise from the direction of the Earth \(x\)-axis (north). The wind direction is defined as the direction from which the wind is coming.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Contains the direction cosine matrix. \\
\begin{tabular}{l}
Second \\
(Optional)
\end{tabular} & Contains the wind speed in selected units. \\
\begin{tabular}{l}
Third \\
(Optional)
\end{tabular} & Contains the wind direction in degrees. \\
Output & Dimension Type & Description \\
First & & \begin{tabular}{l}
Contains the wind velocity in body-axes, in \\
selected units.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)
Discrete Wind Gust Model
Horizontal Wind Model 07

\section*{Von Karman Wind Turbulence Model (Continuous)}

Wind Shear Model

\section*{Horizontal Wind Model 07}

\author{
Implement Horizontal Wind Model 07
}

\section*{Library}

Environment/Wind

\section*{Description真-}

The Horizontal Wind Model 07 block implements the U.S. Naval Research Laboratory \(\mathrm{HWM}^{\mathrm{TM}}\) routine to calculate the meridional and zonal components of the wind for a set of geophysical data: latitude, longitude, and altitude.

\section*{Dialog Box}

\section*{Units}

Specify the input and output units. The units you select determine the input and output wind speed and velocity, as shown in the table.
\begin{tabular}{|l|l|l|}
\hline Units & Wind Speed & Wind Velocity \\
\hline Metric (MKS) & Meters per second & Meters per second \\
\hline \begin{tabular}{l}
English (Velocity in ft/ \\
s)
\end{tabular} & Feet per second & Feet per second \\
\hline \begin{tabular}{l}
English (Velocity in \\
kts)
\end{tabular} & Knots & Knots \\
\hline
\end{tabular}

\section*{Model}

Select the horizontal wind model type for which to calculate the wind components.
- Disturbance

Calculate the effect of only magnetic disturbances in the wind. For this model type, input Ap index values greater than or equal to 0 .
- Quiet

Calculate the horizontal wind model without the magnetic disturbances. For this model type, do not input an Ap index value.
- Total

Calculate the combined effect of the quiet and magnetic disturbances. For this model type, input Ap index values greater than or equal to 0 .

\section*{Action for out of range input}

Specify the block behavior when the block inputs are out of range.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline None & \begin{tabular}{l}
No action. The block imposes upper and lower limits on \\
an input signal.
\end{tabular} \\
\hline Warning & \begin{tabular}{l}
Warning in the Diagnostic Viewer, model simulation \\
continues. For Accelerator and Rapid Accelerator \\
modes, setting the action to Warning has no effect and \\
the model behaves as though the action is set to None.
\end{tabular} \\
\hline Error (default) & \begin{tabular}{l}
MATLAB returns an exception, model simulation \\
stops. For Accelerator and Rapid Accelerator modes, \\
setting the action to Error has no effect and the model \\
behaves as though the action is set to None.
\end{tabular} \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{|c|c|c|}
\hline Input & Dimension Type & Description \\
\hline \multirow[t]{3}{*}{First} & \multirow[t]{3}{*}{Three-element vector of doubles} & The input specifies the geodetic latitude (\(\mu\)), longitude (1), and geopotential altitude (h) where the block implements the model. \\
\hline & & Latitude and longitude values are in degrees. \\
\hline & & The altitude value is in the units you selected in the Units parameter. Specify the altitude element as a value between 0 and 500 km . \\
\hline Second & Scalar double & The input specifies the day of year in Universal Coordinated Time (UTC). The input specifies the day as a value between 1 and 366 (for a leap year). \\
\hline Third & Scalar double & Contains elapsed seconds since midnight for the selected day, in UTC. \\
\hline Fourth (Optional) & Scalar double & Contains the Ap index for the Universal Time (UT) when the block evaluates the model. Select the index from the NOAA National Geophysical Data Center, which contains 3 hour interval geomagnetic disturbance index values. If the Ap index value is greater than zero, the software takes into account magnetic effects during model evaluation. \\
\hline & & This input appears when you select the total or disturbance wind model type. Specify the Ap index as a value between 0 and 400. This input disappears when you select the quiet model type in the Model parameter. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Output & Dimension Type & Description \\
First & 1 -by-2 vector of doubles & \begin{tabular}{l}
The wind velocity vector contains the \\
meridional and zonal wind components in that \\
order.
\end{tabular}
\end{tabular}

\section*{See Also}

Discrete Wind Gust Model \| Dryden Wind Turbulence Model (Discrete) | Dryden Wind Turbulence Model (Continuous) | Horizontal Wind Model \| Von Karman Wind Turbulence Model (Continuous) | Wind Shear Model

\section*{External Web Sites}
- NOAA National Geophysical Data Center

\section*{Ideal Airspeed Correction}

Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS) from each other

\section*{Library}

Flight Parameters

The Ideal Airspeed Correction block calculates one of the following airspeeds: equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS), from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction block. The first equation shows TAS as a function of EAS, relative pressure ratio at altitude (8), and speed of sound at altitude (a).
\[
T A S=\frac{E A S \times a}{a_{0} \sqrt{\delta}}
\]

Using the compressible form of Bernoulli's equation and assuming isentropic conditions, the last two equations for EAS and CAS are derived.
\[
\begin{aligned}
& E A S=\sqrt{\frac{2 \gamma P}{(\gamma-1) \rho_{0}}\left(\left(\frac{q}{P}+1\right)^{(\gamma-1) / \gamma}-1\right)} \\
& C A S=\sqrt{\frac{2 \gamma P_{0}}{(\gamma-1) \rho_{0}}\left(\left(\frac{q}{P_{0}}+1\right)^{(\gamma-1) / \gamma}-1\right)}
\end{aligned}
\]

In order to generate a correction table and its approximate inverse, these two equations were solved for dynamic pressure (\(q\)). Having values of \(q\) by a function of \(E A S\) and ambient pressure at altitude \((P)\) or by a function of \(C A S\), allows the two equations to be solved using the other's solution for \(q\), thus creating a solution for \(E A S\) that depends on \(P\) and \(C A S\) and a solution for \(C A S\) that depends on \(P\) and \(E A S\).

\section*{Dialog Box}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|l|l|}
\hline Units & Airspeed Input & Speed of Sound & Air Pressure & \begin{tabular}{l}
Airspeed \\
Output
\end{tabular} \\
\hline Metric (MKS) & Meters per second & \begin{tabular}{l}
Meters per \\
second
\end{tabular} & Pascal & \begin{tabular}{l}
Meters per \\
second
\end{tabular} \\
\hline \begin{tabular}{l}
English \\
(Velocity in \\
ft/s)
\end{tabular} & Feet per second & Feet per second & \begin{tabular}{l}
Pound force \\
per square \\
inch
\end{tabular} & \begin{tabular}{l}
Feet per \\
second
\end{tabular} \\
\hline \begin{tabular}{l}
English \\
(Velocity in \\
kts)
\end{tabular} & Knots & Knots & \begin{tabular}{l}
Pound force \\
per square \\
inch
\end{tabular} & Knots \\
\hline
\end{tabular}

\section*{Airspeed input}

Specify the airspeed input type:
\begin{tabular}{|l|l|}
\hline TAS & True airspeed \\
\hline EAS & Equivalent airspeed \\
\hline CAS & Calibrated airspeed \\
\hline
\end{tabular}

\section*{Airspeed output}

Specify the airspeed output type:
\begin{tabular}{|l|l|}
\hline Velocity Input & Velocity Output \\
\hline TAS & EAS (equivalent airspeed) \\
\cline { 2 - 2 } & CAS (calibrated airspeed) \\
\hline \multirow{2}{*}{ EAS } & TAS (true airspeed) \\
\cline { 2 - 2 } & CAS (calibrated airspeed) \\
\hline \multirow{2}{*}{ CAS } & TAS (true airspeed) \\
\cline { 2 - 2 } & EAS (equivalent airspeed) \\
\hline
\end{tabular}

\section*{Action for out of range input}

Specify if an out-of-range input (supersonic airspeeds) invokes a warning, an error, or no action.

\section*{Inputs and Outputs}
\begin{tabular}{ll}
Input & Dimension Type \\
First & Description \\
Second & \begin{tabular}{l}
Contains the selected airspeed in the selected \\
units.
\end{tabular} \\
Third & \begin{tabular}{l}
Contains the speed of sound in the selected \\
units.
\end{tabular} \\
& \begin{tabular}{l}
Contains the static pressure in the selected \\
units.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Output & Dimension Type \\
First & Description \\
& \begin{tabular}{l}
Contains the selected airspeed in the selected \\
units.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

This block assumes that the air flow is compressible, isentropic (subsonic flow), dry air with constant specific heat ratio, Y .

\section*{Examples}

See the aeroblk_indicated model and the aeroblk_calibrated model for examples of this block.

\section*{References}

Lowry, J. T., Performance of Light Aircraft, AIAA Education Series, Washington, DC, 1999.

Aeronautical Vestpocket Handbook, United Technologies Pratt \& Whitney, August, 1986.

\section*{Incidence \& Airspeed}

Calculate incidence and airspeed

\section*{Library}

Flight Parameters

\section*{Description \\ }

The Incidence \& Airspeed block supports the 3DoF equations of motion model by calculating the angle between the velocity vector and the body, and also the total airspeed from the velocity components in the body-fixed coordinate frame.
\[
\begin{aligned}
& \alpha=\operatorname{atan}\left(\frac{w}{u}\right) \\
& V=\sqrt{u^{2}+w^{2}}
\end{aligned}
\]

\section*{Dialog Box}

2- Function Block Parameters: Incidence \& Airspeed \(x\)
IncidenceAirspeed (mask) (link)
Calculate the angle between the body and the velocity vector (incidence) and the velocity magnitude from the components in body axes (\(\mathrm{U}, \mathrm{w}\)).

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & Two-element vector & \begin{tabular}{l}
Contains the velocity of the body resolved into \\
the body-fixed coordinate frame.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
First & & \begin{tabular}{l}
Contains the incidence angle, in radians. \\
Second
\end{tabular}
\end{tabular}

\section*{Examples}

See the Aerodynamics \& Equations of Motion subsystem of the aeroblk_guidance_airframe model for examples of this block.

\author{
See Also
}

\author{
Incidence, Sideslip \& Airspeed
}

\section*{Incidence, Sideslip \& Airspeed}

Calculate incidence, sideslip, and airspeed

\section*{Library}

Flight Parameters

\section*{Description}

The Incidence, Sideslip \& Airspeed block supports the 6DoF (Euler Angles) and 6DoF (Quaternion) models by calculating the angles between the velocity vector and the body, and also the total airspeed from the velocity components in the body-fixed coordinate frame.
\[
\begin{aligned}
& \alpha=a \tan \left(\frac{w}{u}\right) \\
& \beta=a \sin \left(\frac{v}{V}\right) \\
& V=\sqrt{u^{2}+v^{2}+w^{2}} \\
& \alpha=\operatorname{atan}\left(\frac{w}{u}\right) \\
& \beta=\operatorname{asin}\left(\frac{v}{V}\right) \\
& V=\sqrt{u^{2}+v^{2}+w^{2}}
\end{aligned}
\]

\section*{Dialog Box}
```

沙隹隹 Block Parameters: Incidence, Sideslip, \& Airspeed

Incidence，Sideslip，Airspeed（mask）（link）
Calculate the angles between the body and the velocity vector （incidence and sideslip），and the velocity magnitude from the components in body axes（Vb）．

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Three－element vector | Contains the velocity of the body resolved into <br> the body－fixed coordinate frame． |
| Output | Dimension Type | Description |
| First |  | Contains the incidence angle in radians． <br> Second |
| Contains the sideslip angle in radians． |  |  |
| Third |  | Contains the airspeed of the body． |

## Examples

See Airframe in the aeroblk＿HL20 model for an example of this block．

## See Also

Incidence \＆Airspeed

## International Geomagnetic Reference Field 11

Calculate Earth's magnetic field and secular variation using 11th generation of International Geomagnetic Reference Field

## Library

Environment/Gravity


The International Geomagnetic Reference Field 11 block calculates the Earth's magnetic field and secular variation using the 11th generation of the International Geomagnetic Reference Field. It calculates these values at a location and time that you define.

## Dialog Box

Function Block Parameters: International Geomagnetic Reference Fi... $x$
International Geomagnetic Reference Field 11 (mask) (link)
Calculate the Earth's magnetic field and the secular variation at a specific location and time using the 11th generation of International Geomagnetic Reference Field (IGRF-11). This model is valid for the year 1900 through the year 2015.

The IGRF-11 can be found on the web at http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html.

Height is entered in length units of selected unit system. Latitude and longitude are entered in degrees.

Parameters
Units: Metric (MKS)

, Input decimal year
Month: January
Day: 1
Year: 2010
Action for out of range input: Error
V Output secular variation

## Units

Specifies the parameter and output units:

| Units | Height |
| :--- | :--- |
| Metric (MKS) | Meters |
| English | Feet |

## Input decimal year

When selected, the decimal year is an input for the International Geomagnetic Reference Field 11 block. Otherwise, specify a date using the dialog parameters Month, Day, and Year.

## Month

Specifies the month to calculate decimal year.
Day
Specifies the day to calculate decimal year.

## Year

Specifies the year to calculate decimal year. In the list, select from 1900 to 2015.

## Action for out of range input

Specifies whether out-of-range input invokes a warning, error, or no action.

## Output secular variance

Select this check box to enable the output of secular variances (annual rate of change) with nonsecular variances:

| Secular Variance | Description |
| :--- | :--- |
| Magnetic Field | Magnetic field vector, in nanotesla (nT). <br> $Z$ is the vertical component (+ve down). |
| Horizontal Intensity | Horizontal intensity, in nanotesla (nT). |
| Declination | Declination, in degrees (+ve east). |
| Inclination | Inclination, in degrees (+ve down). |
| Total Intensity | Total intensity, in nanotesla (nT). |
| SV Magnetic Field | Secular variation of magnetic field. |
| SV Horizontal Intensity | Secular variation of horizontal intensity. <br> Secular variation of declination, the angle <br> between true north and the magnetic <br> field vector (positive eastward). |
| SV Declination | Secular variation of inclination, the <br> angle between the horizontal plane <br> and the magnetic field vector (positive <br> downward). |
| SV Inclination | Secular variation of total intensity. |

Clear this check box to enable just the nonsecular variances:

- Magnetic Field
- Horizontal Intensity
- Declination
- Inclination
- Total Intensity


## Inputs and Outputs

| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Scalar | Contains the height, in selected units. |
| Second | Scalar | Contains the latitude, in degrees. |
| Third | Scalar | Contains the longitude, in degrees. |
| Fourth (Optional) | Scalar | Contains the desired year in a decimal format to include any fraction of the year that has already passed. The value is the current year plus the number of days that have passed in this year divided by 365 . |
|  |  | The following code illustrates how to calculate the decimal year, dyear, for March 21, 2005: <br> $\% \% \%$ BEGIN CODE \% \% \% <br> dyear=decyear('21-March-2005', 'dd-mmm-yyyy') <br> \%\%\%END CODE\%\%\% |


| Output | Dimension Type |
| :--- | :--- |
| First | Description |
| Second | Contains the magnetic field vector, in selected <br> units. |
| Third | Contains the horizontal intensity, in selected <br> units. |
| Fourth | Contains the declination, in degrees. |
| Fifth | Contains the inclination, in degrees. |
|  | Contains the total intensity, in selected units. |


| Output | Dimension Type |
| :--- | :--- |
| Sixth | Description |
| (Optional) | Contains the secular variation of magnetic field |
| Seventh | vector, in selected units per years. |
| (Optional) | Contains the secular variation of horizontal <br> intensity, in selected units per year. |
| Eight | Contains the secular variation of declination, in |
| (Optional) | minutes per year. |
| Ninth | Contains the secular variation of inclination, in |
| (Optional) | minutes per year. |
| Tenth | Contains the secular variation of total intensity, |
| (Optional) | in selected units per year. |

## Limitations

This block is valid between the heights of -1000 m and 600000 m .
This block is valid between the years of 1900 and 2015.
The following site has additional limitations:
http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html

## References

International Association of Geomagnetism and Aeronomy. 11th Generation International Geomagnetic Reference Field: http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html

Blakely, R. J., Potential Theory in Gravity \& Magnetic Applications. Cambridge, UK: Cambridge University Press, 1996.

## Interpolate Matrix(x)

Return interpolated matrix for given input

## Library

GNC/Controls


The Interpolate Matrix(x) block interpolates a one-dimensional array of matrices.
This one-dimensional case assumes a matrix $M$ is defined at a discrete number of values of an independent variable
$x=\left[x_{1} x_{2} x_{3} \ldots x_{\mathrm{i}} x_{\mathrm{i}+1} \ldots x_{\mathrm{n}}\right]$.
Then for $x_{\mathrm{i}}<x<x_{\mathrm{i}+1}$, the block output is given by

$$
(1-\lambda) M\left(x_{i}\right)+\lambda M\left(x_{i+1}\right)
$$

where the interpolation fraction is defined as

$$
\lambda=\left(x-x_{i}\right) /\left(x_{i+1}-x_{i}\right)
$$

The matrix to be interpolated should be three dimensional, the first two dimensions corresponding to the matrix at each value of $x$. For example, if you have three matrices $A$, $B$, and $C$ defined at $x=0, x=0.5$, and $x=1.0$, then the input matrix is given by

```
matrix(:,:,1) = A;
matrix(:,:,2) = B;
matrix(:,:,3) = C;
```


## Dialog Box

| Sunction Block Parameters: Interpolate Matrix(x) |  |
| :--- | :--- |
| ScheduleMatrix-1D (mask) (link) |  |
| Return an interpolated matrix for given input x_k and x_f. Inputs must |  |
| be from the Simulink Prelookup block. |  |
| Parameters |  |
| Matrix to interpolate: |  |
| matrix | Cancel |

## Matrix to interpolate

Matrix to be interpolated, with three indices and the third index labeling the interpolating values of $x$.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the interpolation index $i$. |
| Second |  | Contains the interpolation fraction $\lambda$. |
| Output | Dimension Type | Description |
| First |  | Contains the interpolated matrix. |

## Assumptions and Limitations

This block must be driven from the Simulink Prelookup block.

## Examples

See the following block reference pages: 1D Controller [A(v), B(v),C(v), D(v)], 1D Observer Form $[\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{F}(\mathrm{v}), \mathrm{H}(\mathrm{v})]$, and 1D Self-Conditioned $[\mathrm{A}(\mathrm{v}), \mathrm{B}(\mathrm{v}), \mathrm{C}(\mathrm{v}), \mathrm{D}(\mathrm{v})]$.

## See Also

Interpolate Matrix (x,y)
Interpolate Matrix(x,y,z)

## Interpolate Matrix(x,y)

Return interpolated matrix for given inputs

## Library

GNC/Controls

## Description <br> 

The Interpolate Matrix( $\mathrm{x}, \mathrm{y}$ ) block interpolates a two-dimensional array of matrices.
This two-dimensional case assumes the matrix is defined as a function of two independent variables, $\boldsymbol{x}=\left[\begin{array}{llllll}x_{1} & x_{2} & x_{3} \ldots & x_{\mathrm{i}} & x_{\mathrm{i}+1} & \ldots\end{array} x_{\mathrm{n}}\right]$ and $\boldsymbol{y}=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\mathrm{j}} \\ y_{\mathrm{j}+1} & \ldots & y_{\mathrm{m}}\end{array}\right]$. For given values of $x$ and $y$, four matrices are interpolated. Then for $x_{\mathrm{i}}<x<x_{\mathrm{i}+1}$ and $y_{\mathrm{j}}<y<y_{\mathrm{j}}$ ${ }_{+1}$, the output matrix is given by

$$
\begin{aligned}
& \left(1-\lambda_{y}\right)\left[\left(1-\lambda_{x}\right) M\left(x_{i}, y_{j}\right)+\lambda_{x} M\left(x_{i+1}, y_{j}\right)\right]+ \\
& \lambda_{y}\left[\left(1-\lambda_{x}\right) M\left(x_{i}, y_{j+1}\right)+\lambda_{x} M\left(x_{i+1}, y_{j+1}\right)\right]
\end{aligned}
$$

where the two interpolation fractions are denoted by

$$
\lambda_{x}=\left(x-x_{i}\right) /\left(x_{i+1}-x_{i}\right)
$$

and

$$
\lambda_{y}=\left(y-y_{j}\right) /\left(y_{j+1}-y_{j}\right)
$$

In the two-dimensional case, the interpolation is carried out first on $x$ and then $y$.
The matrix to be interpolated should be four dimensional, the first two dimensions corresponding to the matrix at each value of $x$ and $y$. For example, if you have four
matrices $A, B, C$, and $D$ defined at $(\mathrm{x}=0.0, \mathrm{y}=1.0),(\mathrm{x}=0.0, \mathrm{y}=3.0)$, $(\mathrm{x}=1.0, \mathrm{y}=1.0)$ and $(\mathrm{x}=1.0, \mathrm{y}=3.0)$, then the input matrix is given by

```
matrix(:,:,1,1) = A;
matrix(:,:,1,2) = B;
matrix(:,:,2,1) = C;
matrix(:,:,2,2) = D;
```


## Dialog Box

| Sunction Block Parameters: Interpolate Matrix( $\mathrm{x}, \mathrm{y}$ ) |  |
| :--- | :--- |
| ScheduleMatrix-2D (mask) (link) |  |
| Return an interpolated matrix for given inputs $\mathrm{x} \_\mathrm{k}, \mathrm{x} \_\mathrm{f}, \mathrm{y} \_\mathrm{k}$ and $\mathrm{y} \_\mathrm{f}$. |  |
| Inputs must be from Simulink Prelookup block. |  |
| Parameters |  |
| Matrix to interpolate: |  |
| matrix | Cancel |

## Matrix to interpolate

Matrix to be interpolated, with four indices and the third and fourth indices labeling the interpolating values of $x$ and $y$.

## Inputs and Outputs

| Input | Dimension Type |
| :--- | :--- |
| First | Description |
| Second | Contains the first interpolation index $i$. |
| Third | Contains the first interpolation fraction $\lambda_{\mathrm{x}}$. |
| Fourth | Contains the second interpolation index $j$. |
|  | Contains the second interpolation fraction $\lambda_{\mathrm{y}}$. |


| Output | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the interpolated matrix. |

## Assumptions and Limitations

This block must be driven from the Simulink Prelookup block.

## Examples

See the following block reference pages: 2D Controller [A(v),B(v),C(v), D(v)], 2D Observer Form $[A(v), B(v), C(v), F(v), H(v)]$, and 2D Self-Conditioned $[A(v), B(v), C(v), D(v)]$.

## See Also

Interpolate Matrix(x)
Interpolate Matrix(x,y,z)

## Interpolate Matrix (x,y,z)

Return interpolated matrix for given inputs

## Library

## GNC/Controls



The Interpolate Matrix (x,y,z) block interpolates a three-dimensional array of matrices.
This three-dimensional case assumes the matrix is defined as a function of three independent variables:
$x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{\mathrm{i}} \\ x_{\mathrm{i}+1} & \ldots & x_{\mathrm{n}}\end{array}\right]$
$y=\left[\begin{array}{llllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\mathrm{j}} & y_{\mathrm{j}+1}\end{array} \ldots y_{\mathrm{m}}\right]$
$z=\left[\begin{array}{lllllll}z_{1} & z_{2} & z_{3} & \ldots & z_{\mathrm{k}} & z_{\mathrm{k}+1} \ldots & z_{\mathrm{p}}\end{array}\right]$
For given values of $x, y$, and $z$, eight matrices are interpolated. Then for
$x_{\mathrm{i}}<x<x_{\mathrm{i}+1}$
$y_{j}<y<y_{j+1}$
$z_{\mathrm{k}}<z<z_{\mathrm{k}+1}$
the output matrix is given by

$$
\begin{aligned}
\left(1-\lambda_{z}\right) & \left\{\left(1-\lambda_{y}\right)\left[\left(1-\lambda_{x}\right) M\left(x_{i}, y_{j}, z_{k}\right)+\lambda_{x} M\left(x_{i+1}, y_{j}, z_{k}\right)\right]\right. \\
& \left.+\lambda_{y}\left[\left(1-\lambda_{x}\right) M\left(x_{i}, y_{j+1}, z_{k}\right)+\lambda_{x} M\left(x_{i+1}, y_{j+1}, z_{k}\right)\right]\right\} \\
+\lambda_{z}\{ & \left\{\left(1-\lambda_{y}\right)\left[\left(1-\lambda_{x}\right) M\left(x_{i}, y_{j}, z_{k+1}\right)+\lambda_{x} M\left(x_{i+1}, y_{j}, z_{k+1}\right)\right]\right. \\
& \left.+\lambda_{y}\left[\left(1-\lambda_{x}\right) M\left(x_{i}, y_{j+1}, z_{k+1}\right)+\lambda_{x} M\left(x_{i+1}, y_{j+1}, z_{k+1}\right)\right]\right\}
\end{aligned}
$$

where the three interpolation fractions are denoted by

$$
\begin{aligned}
& \lambda_{x}=\left(x-x_{i}\right) /\left(x_{i+1}-x_{i}\right) \\
& i_{y}=\left(y-y_{j}\right) /\left(y_{j+1}-y_{j}\right) \\
& \lambda_{z}=\left(z-z_{k}\right) /\left(z_{k+1}-z_{k}\right)
\end{aligned}
$$

In the three-dimensional case, the interpolation is carried out first on $x$, then $y$, and finally $z$.

The matrix to be interpolated should be five dimensional, the first two dimensions corresponding to the matrix at each value of $x, y$, and $z$. For example, if you have eight matrices $A, B, C, D, E, F, G$, and $H$ defined at the following values of $x, y$, and $z$, then the corresponding input matrix is given by

| $(x=0.0, y=1.0, z=0.1)$ | $\operatorname{matrix}(:,:, 1,1,1)=A ;$ |
| :--- | :--- |
| $(x=0.0, y=1.0, z=0.5)$ | $\operatorname{matrix}(:,:, 1,1,2)=B ;$ |
| $(x=0.0, y=3.0, z=0.1)$ | $\operatorname{matrix}(:,:, 1,2,1)=C ;$ |
| $(x=0.0, y=3.0, z=0.5)$ | $\operatorname{matrix}(:,:, 1,2,2)=D ;$ |
| $(x=1.0, y=1.0, z=0.1)$ | $\operatorname{matrix}(:,:, 2,1,1)=E ;$ |
| $(x=1.0, y=1.0, z=0.5)$ | $\operatorname{matrix}(:,:, 2,2,1)=G ;$ |
| $(x=1.0, y=3.0, z=0.1)$ | $\operatorname{matrix}(:,:, 2,2,2)=H ;$ |
| $(x=1.0, y=3.0, z=0.5)$ |  |

## Dialog Box



## Matrix to interpolate

Matrix to be interpolated, with five indices and the third, fourth, and fifth indices labeling the interpolating values of $x, y$, and $z$.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the first interpolation index $i$. |  |
| Second | Contains the first interpolation fraction $\lambda_{x}$. |  |
| Third | Contains the second interpolation index $j$. |  |
| Fourth | Contains the second interpolation fraction $\lambda_{y}$. |  |
| Fifth | Contains the third interpolation index $k$. |  |
| Sixth | Contains the third interpolation fraction $\lambda_{z}$. |  |
| Output | Dimension Type | Description |
| First |  | Contains the interpolated matrix. |

## Assumptions and Limitations

This block must be driven from the Simulink Prelookup block.

## Examples

See the following block reference pages: 3D Controller [A(v),B(v),C(v), D(v)], 3D Observer Form $[A(v), B(v), C(v), F(v), H(v)]$, and $3 D$ Self-Conditioned $[A(v), B(v), C(v), D(v)]$.

## See Also

Interpolate Matrix(x)
Interpolate Matrix (x,y)

## Invert 3x3 Matrix

Compute inverse of 3-by-3 matrix

## Library

Utilities/Math Operations

## Description <br> $A^{-1}$

The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix.
If $\operatorname{det}(A)=0$, an error occurs and the simulation stops.

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 3-by-3 matrix |  |
| Output | Dimension Type | Description |
| First | 3-by-3 matrix | Contains the matrix inverse of input matrix. |

## See Also

Adjoint of 3x3 Matrix
Create 3 x 3 Matrix
Determinant of $3 \times 3$ Matrix

# ISA Atmosphere Model 

Implement International Standard Atmosphere (ISA)

## Library

Environment/Atmosphere

## Description



The ISA Atmosphere Model block implements the mathematical representation of the international standard atmosphere values for ambient temperature, pressure, density, and speed of sound for the input geopotential altitude.

The ISA Atmosphere Model block icon displays the input and output metric units.

## Dialog Box



## Change atmospheric parameters

Select to customize various atmospheric parameters to be different from the ISA values.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the geopotential height. |
| Output | Dimension Type | Description |
| First |  | Contains the temperature. |
| Second | Contains the speed of sound. |  |
| Third | Contains the air pressure. |  |
| Fourth | Contains the air density. |  |

## Assumptions and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of 20 km , temperature and pressure values are held. Density and speed of sound are calculated using a perfect gas relationship.

## Reference

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

## See Also

COESA Atmosphere Model, CIRA-86 Atmosphere Model, Lapse Rate Model

## Julian Epoch to Besselian Epoch

Transform position and velocity components from Standard Julian Epoch (J2000) to discontinued Standard Besselian Epoch (B1950)

## Library

Utilities/Axes Transformations


The Julian Epoch to Besselian Epoch block transforms two 3-by-1 vectors of Julian Epoch position $\left(\bar{r}_{J 2000}\right)$, and Julian Epoch velocity ( $\bar{v}_{J 2000}$ ) into Besselian Epoch position ( $\bar{r}_{B 1950}$ ), and Besselian Epoch velocity ( $\bar{v}_{B 1950}$ ). The transformation is calculated using:

$$
\left[\begin{array}{l}
\bar{r}_{B 1950} \\
\bar{v}_{B 1950}
\end{array}\right]=\left[\begin{array}{ll}
\bar{M}_{r r} & \bar{M}_{v r} \\
\bar{M}_{r v} & \bar{M}_{v v}
\end{array}\right]^{T}\left[\begin{array}{l}
\bar{r}_{J 2000} \\
\bar{v}_{J 2000}
\end{array}\right]
$$

where

$$
\left(\bar{M}_{r r}, \bar{M}_{v r}, \bar{M}_{r v}, \bar{M}_{v v}\right)
$$

are defined as:

$$
\begin{aligned}
& \bar{M}_{r r}=\left[\begin{array}{llll}
0.9999256782 & -0.0111820611 & -0.0048579477 \\
0.0111820610 & 0.9999374784 & -0.0000271765 \\
0.0048579479 & -0.0000271474 & 0.9999881997
\end{array}\right] \\
& \bar{M}_{v r}=\left[\begin{array}{cccc}
0.00000242395018 & -0.00000002710663 & -0.00000001177656 \\
0.00000002710663 & 0.00000242397878 & -0.00000000006587 \\
0.00000001177656 & -0.00000000006582 & 0.00000242410173
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{M}_{r v}=\left[\begin{array}{ccc}
-0.000551 & -0.238565 & 0.435739 \\
0.238514 & -0.002667 & -0.008541 \\
-0.435623 & 0.012254 & 0.002117
\end{array}\right] \\
& \bar{M}_{v v}=\left[\begin{array}{ccc}
0.99994704 & -0.01118251 & -0.00485767 \\
0.01118251 & 0.99995883 & -0.00002718 \\
0.00485767 & -0.00002714 & 1.00000956
\end{array}\right]
\end{aligned}
$$

## Dialog Box

Function Block Parameters: Julian Epoch to Besselian Epoch $x$
Julian to Besselian (mask) (link)
Transform position and velocity components from the Standard Julian Epoch (J2000) to the discontinued Standard Besselian Epoch (B1950).

## Inputs and Outputs

| Input | Dimension Type | Description <br> First |
| :--- | :--- | :--- |
| 3-by-1 vector | Contains the position in Standard Julian Epoch <br> (J2000). |  |
| Second | 3-by-1 vector | Contains the velocity in Standard Julian Epoch <br> (J2000). |
| Output | Dimension Type | Description |
| First | 3 -by-1 vector | Contains the position in Standard Besselian <br> Epoch (B1950). <br> Second |
|  | 3-by-1 vector | Contains the velocity in Standard Besselian <br> Epoch (B1950). |

## Reference

"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2A.

## See Also

Besselian Epoch to Julian Epoch

## Julian Date Conversion

Calculate Julian date or modified Julian date

## Library

Utilities/Unit Conversions


This block converts the specified date to the Julian date or modified Julian date.

## Dialog Box



## Year

Specify the year used to calculate the Julian date. Enter a double value that is a whole number greater than 1 , such as 2013.

## Month

Specify the month used to calculate the Julian date. From the list, select the month from January to December.

## Day

Specify the day used to calculate the Julian date. From the list, select the day from 1 to 31 .

## Hour

Specify the hour used to calculate the Julian date. Enter a double value that is a whole number, from 0 to 24 .

## Minutes

Specify the minutes used to calculate the Julian date. Enter a double value that is a whole number, from 0 to 60 .

## Seconds

Specify the seconds used to calculate the Julian date. Enter a double value that is a whole number, from 0 to 60.

## Calculate modified Julian date

Select this check box to calculate the modified Julian date (MJD) for corresponding elements of the year, month, day, hour, minute, and second.

## Time Increment

Specify the time increment between the specified date and the desired model simulation time. The block adjusts the calculated Julian date to take into account the time increment from model simulation. For example, selecting Day and connecting a simulation timer to the port means that each time increment unit is one day and the block adjusts its calculation based on that simulation time.

This parameter corresponds to the first block input, the clock source.
Possible values are Day, Hour, Min, Sec, and None. If you select None, the calculated Julian date does not take into account the model simulation time. Selecting this option removes the first block input.

## Action for out of range input

Specify the block behavior when the block inputs are out of range.

| Action | Description |
| :--- | :--- |
| None | No action. |
| Warning | Warning in the MATLAB Command Window, model <br> simulation continues. |
| Error (default) | MATLAB returns an exception, model simulation <br> stops. |

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First <br> (Optional) | Scalar | Clock source for model simulation. |
|  |  |  |
| Output | Dimension Type | Description |
| First | Scalar | Julian date. |

## Assumptions and Limitations

This block is valid for all common era (CE) dates in the Gregorian calendar.
The calculation of Julian date does not take into account leap seconds.

## See Also

juliandate

## Lapse Rate Model

## Implement lapse rate model for atmosphere

## Library

Environment/Atmosphere


The Lapse Rate Model block implements the mathematical representation of the lapse rate atmospheric equations for ambient temperature, pressure, density, and speed of sound for the input geopotential altitude. You can customize this atmospheric model, described below, by specifying atmospheric properties in the block dialog.

The following equations define the troposphere

$$
\begin{aligned}
& T=T_{0}-L h \\
& P=P_{0}\left(\frac{T}{T_{0}}\right)^{\frac{g}{L R}} \\
& \rho=\rho_{0}\left(\frac{T}{T_{0}}\right)^{\frac{g}{L R}-1} \\
& a=\sqrt{\gamma R T}
\end{aligned}
$$

The following equations define the tropopause (lower stratosphere)

$$
\begin{aligned}
& T=T_{0}-L h t s \\
& P=P_{0}\left(\frac{T}{T_{0}}\right)^{\frac{g}{L R}} e^{\frac{g}{R T}(h t s-h)} \\
& \rho=\rho_{0}\left(\frac{T}{T_{0}}\right)^{\frac{g}{L R}-1} e^{\frac{g}{R T}(h t s-h)} \\
& a=\sqrt{\gamma R T}
\end{aligned}
$$

where:

| $T_{0}$ | Absolute temperature at mean sea level in kelvin (K) |
| :--- | :--- |
| $\rho_{0}$ | Air density at mean sea level in $\mathrm{kg} / \mathrm{m}^{3}$ |
| $P_{0}$ | Static pressure at mean sea level in $\mathrm{N} / \mathrm{m}^{2}$ |
| $h$ | Altitude in m |
| $h t s$ | Height of the troposphere in m |
| $T$ | Absolute temperature at altitude $h$ in kelvin (K) |
| $\rho$ | Air density at altitude $h$ in $\mathrm{kg} / \mathrm{m}^{3}$ |
| $P$ | Static pressure at altitude $h$ in $\mathrm{N} / \mathrm{m}^{2}$ |
| $a$ | Speed of sound at altitude $h$ in $\mathrm{m} / \mathrm{s}^{2}$ |
| $L$ | Lapse rate in $\mathrm{K} / \mathrm{m}$ |
| $R$ | Characteristic gas constant $\mathrm{J} / \mathrm{kg}-\mathrm{K}$ |
| $\gamma$ | Specific heat ratio |
| $g$ | Acceleration due to gravity in $\mathrm{m} / \mathrm{s}^{2}$ |

The Lapse Rate Model block icon displays the input and output metric units.

## Dialog Box

| F Function Block Parameters: Lapse Rate Model |  |  |
| :---: | :---: | :---: |
| International Standard Atmosphere Model (mask) (link) |  |  |
| Compute International Standard Atmosphere (ISA) model for altitudes between 0 Km and 20 Km using a lapse rate method. <br> Select change atmospheric parameters to create custom atmosphere. |  |  |
| Parameters |  |  |
| $\checkmark$ Change atmospheric parameters |  |  |
| Acceleration due to gravity ( $\mathrm{m} / \mathrm{s}^{\wedge} 2$ ): |  |  |
| 9.80665 |  |  |
| Ratio of specific heats: |  |  |
| 1.4 |  |  |
| Characteristic gas constant ( $\mathrm{J} / \mathrm{Kg} / \mathrm{K}$ ): |  |  |
| 287.0531 |  |  |
| Lapse rate ( $\mathrm{K} / \mathrm{m}$ ) : |  |  |
| 0.0065 |  |  |
| Height of troposphere (m): |  |  |
| 11000 |  |  |
| Height of tropopause (m): |  |  |
| 20000 |  |  |
| Air density at mean sea level ( $\mathrm{Kg} / \mathrm{m} \wedge 3$ ): |  |  |
| 1.225 |  |  |
| Ambient pressure at mean sea level ( $\left.\mathrm{N} / \mathrm{m}^{\wedge} 2\right)$ : |  |  |
| 101325 |  |  |
| Ambient temperature at mean sea level ( K ): |  |  |
| 288.15 |  |  |
| Lowest altitude (m): |  |  |
| 0 |  |  |
| OK Cancel | Help | Apply |

## Change atmospheric parameters

When selected, the following atmospheric parameters can be customized to be different from the ISA values.

## Acceleration due to gravity

Specify the acceleration due to gravity (g).

## Ratio of specific heats

Specify the ratio of specific heats $\gamma$.

## Characteristic gas constant

Specify the characteristic gas constant ( $R$ ).

## Lapse rate

Specify the lapse rate of the troposphere ( $L$ ).

## Height of troposphere

Specify the upper altitude of the troposphere, a range of decreasing temperature.

## Height of tropopause

Specify the upper altitude of the tropopause, a range of constant temperature.

## Air density at mean sea level

Specify the air density at sea level $\left(\rho_{0}\right)$.

## Ambient pressure at mean sea level

Specify the ambient pressure at sea level $\left(P_{0}\right)$.

## Ambient temperature at mean sea level

Specify the ambient temperature at sea level ( $T_{0}$ ).

## Lowest altitude (m)

Specify the lowest altitude above which temperature and pressure lapse. Lowest altitude (m) must be below Height of tropopause. Default value is 0 m .

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the geopotential height. |  |
| Output | Dimension Type | Description |
| First |  | Contains the temperature. |
| Second |  | Contains the speed of sound. |
| Third |  | Contains the air pressure. |


| Output | Dimension Type | Description |
| :--- | :--- | :--- |
| Fourth | Contains the air density. |  |

## Assumptions and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of the tropopause, temperature and pressure values are held. Density and speed of sound are calculated using a perfect gas relationship.

## Reference

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

See Also

COESA Atmosphere Model
ISA Atmosphere Model

## Length Conversion

Convert from length units to desired length units

## Library

Utilities/Unit Conversions

## Description $\sqrt{+} \rightarrow \mathrm{m}$

The Length Conversion block computes the conversion factor from specified input length units to specified output length units and applies the conversion factor to the input signal.

The Length Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

## Dialog Box



## Initial units

Specifies the input units.

## Final units

Specifies the output units.

The following conversion units are available:

| m | Meters |
| :--- | :--- |
| ft | Feet |
| km | Kilometers |
| in | Inches |
| mi | Miles |
| naut mi | Nautical miles |

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the length in initial length units. |
| Output | Dimension Type | Description |
| First |  | Contains the length in final length units. |

## See Also

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

## Linear Second-Order Actuator

Implement second-order linear actuator

## Library

Actuators

## Description $A^{A_{\text {cmonsi }}} A_{\text {aras }}$

The Second Order Linear Actuator block outputs the actual actuator position using the input demanded actuator position and other dialog box parameters that define the system.

## Dialog Box

| Function Block Parameters: Linear Second-Order Actuator |
| :--- |
| LinearSecondOrderActuator (mask) (link) |
| Implement an actuator model with second-order integrator |
| Parameters |
| Natural frequency: |
| 1 |
| Damping ratio: |
| 0.3 |
| Initial position: |
| 0 |
| Initial velocity: |
| 0 |

## Natural frequency

The natural frequency of the actuator. The units of natural frequency are radians per second.

## Damping ratio

The damping ratio of the actuator. A dimensionless parameter.

## Initial position

The initial position of the actuator. The units of initial position must be the same as the units of demanded actuator position.

## Initial velocity

The initial velocity of the actuator. The units of initial velocity must be the same as the units of demanded actuator velocity per second.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the demanded actuator position. |
| Output | Dimension Type | Description |
| First |  | Contains the actual actuator position. |

## See Also

Nonlinear Second-Order Actuator

## LLA to ECEF Position

Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude, longitude, and altitude above planetary ellipsoid

## Library

Utilities/Axes Transformations

## Description



The LLA to ECEF Position block converts geodetic latitude $(\bar{\mu})$, longitude ( $\bar{l}$ ), and altitude $(\bar{h})$ above the planetary ellipsoid into a 3-by-1 vector of ECEF position ( $\bar{p}$ ).
Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles. The ECEF position is calculated from geocentric latitude at mean sea-level $\left(\lambda_{s}\right)$ and longitude using:

$$
\bar{p}=\left[\begin{array}{c}
\bar{p}_{x} \\
\bar{p}_{y} \\
\bar{p}_{z}
\end{array}\right]=\left[\begin{array}{c}
r_{s} \cos \lambda_{s} \cos \imath+h \cos \mu \cos \imath \\
r_{s} \cos \lambda_{s} \sin \imath+h \cos \mu \sin \imath \\
r_{s} \sin \lambda_{s}+h \sin \mu
\end{array}\right]
$$

where geocentric latitude at mean sea-level and the radius at a surface point $\left(r_{s}\right)$ are defined by flattening $(\bar{f})$, and equatorial radius $(\bar{R})$ in the following relationships.

$$
\begin{aligned}
& \lambda_{s}=\operatorname{atan}\left((1-f)^{2} \tan \mu\right) \\
& r_{s}=\sqrt{\frac{R^{2}}{1+\left(1 /(1-f)^{2}-1\right) \sin ^{2} \lambda_{s}}}
\end{aligned}
$$

## Dialog Box



Function Block Parameters: LLA to ECEF Position


LLA to ECEF (mask) (link)
Calculate Earth Centered Earth Fixed (ECEF) position from geodetic latitude, longitude, and altitude.

Parameters
Planet model: Custom
Flattening:
1/298.257223563
Equatorial radius of planet:
6378137

## OK

Cancel
Help
Apply

## Units

Specifies the parameter and output units:

| Units | Altitude | Equatorial Radius | Position |
| :--- | :--- | :--- | :--- |
| Metric (MKS) | Meters | Meters | Meters |


| Units | Altitude | Equatorial Radius | Position |
| :--- | :--- | :--- | :--- |
| English | Feet | Feet | Feet |

This option is only available when Planet model is set to Earth (WGS84).

## Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

## Flattening

Specifies the flattening of the planet. This option is only available with Planet model set to Custom.

## Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for altitude. This option is only available with Planet model set to Custom.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 2-by-1 vector | Contains the geodetic latitude and longitude, in <br> degrees. <br> Contains the altitude above the planetary <br> ellipsoid. |
| Second | Scalar | Description |
| Output | Dimension Type | Contains the position in ECEF frame, in same <br> units as altitude. |
| First | 3-by-1 vector |  |

## Assumptions and Limitations

The planet is assumed to be ellipsoidal. To use a spherical planet, set the Flattening parameter to zero.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the $x$-axis intersects the Greenwich meridian and the equator,
the $z$-axis being the mean spin axis of the planet, positive to the north, and the $y$-axis completes the right-handed system.

## References

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA Education Series, Reston, Virginia, 2000.
"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.

## See Also

See "About Aerospace Coordinate Systems" on page 2-11.
Direction Cosine Matrix ECEF to NED
Direction Cosine Matrix ECEF to NED to Latitude and Longitude
ECEF Position to LLA
Flat Earth to LLA
Radius at Geocentric Latitude

## LLA to ECI Position

Convert latitude, longitude, altitude (LLA) coordinates to Earth-centered inertial (ECI) coordinates

## Library

Utilities/Axes Transformations


LLA to ECI Position block converts latitude, longitude, altitude (LLA) coordinates to Earth-centered inertial (ECI) position coordinates, based on the specified reduction method and Universal Coordinated Time (UTC), for the specified time and geophysical data. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

## Dialog Box




## Reduction

Reduction method to convert the coordinates. Select one of the following:

- IAU-76/FK5

Reduce the calculation using the International Astronomical Union (IAU)-76/ Fifth Fundamental Catalogue (FK5) (IAU-76/FK5) reference system. Choose this reduction method if the reference coordinate system for the conversion is FK5.

> Note: This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to reduce the calculation. This model and theory are no longer current, but the software provides this reduction method for existing implementations. Because of the polar motion approximation that this reduction method uses, the block calculates the transformation matrix rather than the direction cosine matrix.

- IAU-2000/2006

Reduce the calculation using the International Astronomical Union (IAU)-2000/2006 reference system. Choose this reduction method if the reference coordinate system for the conversion is IAU-2000. This reduction method uses the P03 precession model to reduce the calculation.

## Year

Specify the year used to calculate the Universal Coordinated Time (UTC) date. Enter a double value that is a whole number greater than 1, such as 2013.

## Month

Specify the month used to calculate the UTC date. From the list, select the month from January to December.

## Day

Specify the day used to calculate the UTC date. From the list, select the day from 1 to 31.

## Hour

Specify the hour used to calculate the UTC date. Enter a double value that is a whole number from 0 to 24 .

## Minutes

Specify the minutes used to calculate the UTC date. Enter a double value that is a whole number from 0 to 60.

## Seconds

Specify the seconds used to calculate the UTC date. Enter a double value that is a whole number from 0 to 60.

## Time Increment

Specify the time increment between the specified date and the desired model simulation time. The block adjusts the calculated direction cosine matrix to take into
account the time increment from model simulation. For example, selecting Day and connecting a simulation timer to the port means that each time increment unit is one day. The block adjusts its calculation based on that simulation time.

This parameter corresponds to the sixth block input, the clock source.
Possible values are Day, Hour, Min, Sec, and None. If you select None, the calculated Julian date does not take into account the model simulation time. Selecting this option removes the fifth block input.

## Action for out of range input

Specify the block behavior when the block inputs are out of range.

| Action | Description |
| :--- | :--- |
| None | No action. |
| Warning | Warning in the MATLAB Command Window, model <br> simulation continues. |
| Error (default) | MATLAB returns an exception, model simulation <br> stops. |

## Higher accuracy parameters

Select this check box to enable the following inputs. These inputs let you better control the conversion result. See "Inputs and Outputs" on page 4-407 for a description.
[ $\mu l h]$
$\Delta U T 1$
$\Delta A T$
[xp,yp]
$[\Delta \delta \Psi, \Delta \delta \varepsilon]$ or $[\mathrm{d} X, \mathrm{~d} Y]$
day

## Units

Specifies the parameter and output units:

| Units | Position | Equatorial Radius | Altitude |
| :--- | :--- | :--- | :--- |
| Metric (MKS) | Meters | Meters | Meters |
| English | Feet | Feet | Feet |

This option is available only when Planet model is set to Earth (WGS84).
Earth model

Specifies the planet model to use: Custom or WGS84.

## Flattening

Specifies the flattening of the planet. This option is available only with Earth model Custom.

## Equatorial radius

Specifies the radius of the planet at its equator. This option is available only with Earth model Custom.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Three-element vector | [ $\mu l h$ ], latitude, longitude, and altitude values of coordinates to convert, in degrees. |
| Second (Optional) | Scalar | $\Delta U T 1$, difference between UTC and Universal Time (UT1), in seconds, for which the function calculates the direction cosine or transformation matrix, for example, 0.234. |
| Third (Optional) | Scalar | $\Delta A T$, difference between International Atomic Time (IAT) and UTC, in seconds, for which the function calculates the direction cosine or transformation matrix, for example, 32. |
| Fourth (Optional) | 1-by-2 array | [ $x p, y p$ ], polar displacement of the Earth, in radians, from the motion of the Earth crust, along the $x$ - and $y$-axes, for example, [-0.0682e-5 0.1616e-5]. |
| Fifth (Optional) | 1-by-2 array | - If reduction method is IAU-2000/2006, this input is the adjustment to the location of the Celestial Intermediate Pole (CIP), specified in radians. This location ( $[\mathrm{d} X, \mathrm{~d} Y]$ ) is along the $x$ - and $y$-axes, for example, [-0.2530e-6 -0.0188e-6]. <br> - If reduction method is IAU-76/FK5, this input is the adjustment to the longitude ( $[\Delta \delta \Psi, \Delta \delta \varepsilon]$ ), specified in radians, for example, $[-0.2530 \mathrm{e}-6-0.0188 \mathrm{e}-6]$. |


| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| Sixth | Scalar | For historical values, see the International Earth Rotation and Reference Systems Service website (http: / /www.iers.org) and navigate to the Earth Orientation Data Data/Products page. |
|  |  | Time increment, for example, the Clock block. |
|  |  | If the Higher accuracy parameters check box is cleared and the Time Increment parameter is a value other than None, the block has no input. |
| Output | Dimension Type | Description |
| First | 3-by-1 element vector | Original position vector with respect to the ECI reference system. |

## See Also

ECI Position to LLA

## More About

- http://www.iers.org


## LLA to Flat Earth

Estimate flat Earth position from geodetic latitude, longitude, and altitude

## Library

Utilities/Axes Transformations


The LLA to Flat Earth block converts a geodetic latitude $(\bar{\mu})$, longitude $(\bar{\imath})$, and altitude (h) into a 3-by-1 vector of Flat Earth position $(\bar{p})$. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles. The flat Earth coordinate system assumes the $z$-axis is downward positive. The estimation begins by finding the small changes in latitude and longitude from the output latitude and longitude minus the initial latitude and longitude.

$$
\begin{aligned}
& d \mu=\mu-\mu_{0} \\
& d l=\imath-t_{0}
\end{aligned}
$$

To convert geodetic latitude and longitude to the North and East coordinates, the estimation uses the radius of curvature in the prime vertical $\left(R_{N}\right)$ and the radius of curvature in the meridian $\left(R_{M}\right) . R_{N}$ and $R_{M}$ are defined by the following relationships:

$$
\begin{aligned}
& R_{N}=\frac{R}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \mu_{0}}} \\
& R_{M}=R_{N} \frac{1-\left(2 f-f^{2}\right)}{1-\left(2 f-f^{2}\right) \sin ^{2} \mu_{0}}
\end{aligned}
$$

where $(R)$ is the equatorial radius of the planet and $f$ is the flattening of the planet.
Small changes in the North $(\mathrm{dN})$ and East ( dE ) positions are approximated from small changes in the North and East positions by

$$
\begin{aligned}
& d N=\frac{d \mu}{\operatorname{atan}\left(\frac{1}{R_{M}}\right)} \\
& d E=\frac{d l}{\operatorname{atan}\left(\frac{1}{R_{N} \cos \mu_{0}}\right)}
\end{aligned}
$$

With the conversion of the North and East coordinates to the flat Earth $x$ and $y$ coordinates, the transformation has the form of

$$
\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos \psi & \sin \psi \\
-\sin \psi & \cos \psi
\end{array}\right]\left[\begin{array}{l}
N \\
E
\end{array}\right]
$$

where

$$
(\psi)
$$

is the angle in degrees clockwise between the $x$-axis and north.
The flat Earth $z$-axis value is the negative altitude minus the reference height $\left(h_{r e f}\right)$.

$$
p_{z}=-h-h_{r e f}
$$

## Dialog Box

| LA Function Block Parameters: LLA to Flat Earth |
| :--- |
| LLA to Flat Earth (mask) (link) |
| Estimate flat Earth position from geodetic latitude, longitude, and |
| altitude. The flat Earth coordinate system assumes the z -axis is |
| positive downwards. |
| Parameters |
| Units: Metric (MKS) |
| Planet model: Earth (WGS84) |
| Initial geodetic latitude and longitude [deg]: |
| [010] |
| Direction of flat Earth $x$-axis (degrees clockwise from north): |
| 0 |

```
A Function Block Parameters: LLA to Flat Earth
LLA to Flat Earth (mask) (link)
Estimate flat Earth position from geodetic latitude, longitude, and
altitude. The flat Earth coordinate system assumes the z-axis is
positive downwards.
Parameters
 Planet model: Custom *
 Flattening:
 1/298.257223563
 Equatorial radius of planet:
 6 3 7 8 1 3 7
 Initial geodetic latitude and longitude [deg]:
 [0 10]
 Direction of flat Earth x-axis (degrees clockwise from north):
 0
```


## Units

Specifies the parameter and output units:

| Units | Position | Equatorial Radius | Altitude |
| :--- | :--- | :--- | :--- |
| Metric (MKS) | Meters | Meters | Meters |
| English | Feet | Feet | Feet |

This option is available only when Planet model is set to Earth (WGS84).

## Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

## Flattening

Specifies the flattening of the planet. This option is available only with Planet model Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for flat Earth position. This option is available only with Planet model Custom.

## Initial geodetic latitude and longitude

Specifies the reference location, in degrees of latitude and longitude, for the origin of the estimation and the origin of the flat Earth coordinate system.

## Direction of flat Earth x-axis

Specifies angle for converting flat Earth $x$ and $y$ coordinates to North and East coordinates.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 2-by-1 vector | Contains the geodetic latitude and longitude, in <br> degrees. |
| Second | Scalar | Contains the altitude above the input reference <br> altitude, in same units as flat Earth position. <br> Third |
| Scalar | Contains the reference height from the surface <br> of the Earth to the flat Earth frame, in same <br> units as flat Earth position. The reference <br> height is estimated with regard to Earth frame. |  |
| Output | Dimension Type | Description |
| First | 3-by-1 vector | Contains the position in flat Earth frame. |

## Assumptions and Limitations

This estimation method assumes the flight path and bank angle are zero.
This estimation method assumes the flat Earth $z$-axis is normal to the Earth at the initial geodetic latitude and longitude only. This method has higher accuracy over small distances from the initial geodetic latitude and longitude, and nearer to the equator. The longitude has higher accuracy with smaller variations in latitude. Additionally, longitude is singular at the poles.

## References

Etkin, B. Dynamics of Atmospheric Flight New York: John Wiley \& Sons, 1972.
Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, 2nd ed. New York: John Wiley \& Sons, 2003.

## See Also

Direction Cosine Matrix ECEF to NED<br>Direction Cosine Matrix ECEF to NED to Latitude and Longitude<br>ECEF Position to LLA

Flat Earth to LLA
Geocentric to Geodetic Latitude
LLA to ECEF Position
Radius at Geocentric Latitude

## Mach Number

Compute Mach number using velocity and speed of sound

## Library

Flight Parameters


The Mach Number block computes Mach number.
Mach number is defined as

$$
M a c h=\frac{\sqrt{V \cdot V}}{a}
$$

where $a$ is speed of sound and $V$ is velocity vector.

## Dialog Box

| Function Block Parameters: Mach Number |  |
| :--- | :--- |
| Mach Number (mask) (link) |  |
| Compute Mach number using velocity and speed of sound. |  |
|  | OK Cancel |
|  | Help |
| Apply |  |

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | $m$-by-3 | Contains the velocity vector. |


| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| Second | 1-by-1 | Contains the speed of sound. |
| Output | Dimension Type | Description |
| First | $m$-by-1 | Contains the Mach number. |

## Examples

See Airframe in the aeroblk_HL20 model for an example of this block.

## See Also

Aerodynamic Forces and Moments
Dynamic Pressure

## Mass Conversion

Convert from mass units to desired mass units

## Library

Utilities/Unit Conversions

## Description $\xrightarrow{\sqrt{m m} \rightarrow}$

The Mass Conversion block computes the conversion factor from specified input mass units to specified output mass units and applies the conversion factor to the input signal.

The Mass Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

## Dialog Box



## Initial units

Specifies the input units.

## Final units

Specifies the output units.

The following conversion units are available:

| lbm | Pound mass |
| :--- | :--- |
| kg | Kilograms |
| slug | Slugs |

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the mass in initial mass units. |
| Output | Dimension Type | Description |
| First | 3-by-1 vector | Contains the mass in final mass units. |

## See Also

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

## MATLAB Animation

Create six-degrees-of-freedom multibody custom geometry block

## Library

Animation/MATLAB-Based Animation


The MATLAB Animation block creates a six-degrees-of-freedom multibody custom geometry block based on the Aero. Animation object. This block animates one or more vehicle geometries with $x-y-z$ position and Euler angles through the specified bounding box, camera offset, and field of view. This block expects the rotation order $z-y-x$ (psi, theta, phi).

To update the camera parameters in the animation, first set the parameters then close and double-click the block to reopen the MATLAB Animation window.

To access the dialog box for this block, right-click the block, then select Mask Parameters. Alternatively, double-click the block to display the MATLAB Animation window, then click the Block Parameters icon.

Note: The underlying graphics system stores values in single precision. As a result, you might notice that motion at coordinate positions greater than approximately 1 e 6 appear unstable. This is because a single-precision number has approximately six digits of precision. The instability is due to quantization at the local value of the eps MATLAB function. To visualize more stable motion for coordinates beyond 1e6, either offset the input data to a local zero, or scale down the coordinate values feeding the visualization.

## Dialog Box



## Vehicles

Specifies the vehicle to animate. From the list, select from 1 to 10 . The block mask inputs change to reflect the number of vehicles you select. Each vehicle has its own set of inputs, denoted by the number at the beginning of the input label.

## Geometries

Specifies the vehicle geometries. You can specify these geometries using one of the following:

- Variable name, for example geomVar
- Cell array of variable names, for example \{geomVar, AltGeomVar \}
- String with single quotes, for example, 'astredwedge.mat'
- Mixed cell array of variable names and strings, for example \{'file1.mat ', 'file2.mat', 'file3.ac', geomVar\}

Note: All specified geometries specified must exist in the MATLAB workspace and file names must exist in the current folder or be on the MATLAB path.

## Bounding box coordinates

Specifies the boundary coordinates for the vehicle.
This parameter is not tunable during simulation. A change to this parameter takes effect after simulation stops.

## Camera offset

Specifies the distance from the camera aim point to the camera itself.
This parameter is not tunable during simulation. A change to this parameter takes effect after simulation stops.

## Camera view angle

Specifies the camera view angle. By default, the camera aim point is the position of the first body lagged dynamically to indicate motion.

This parameter is not tunable during simulation. A change to this parameter takes effect after simulation stops.

## Sample time

Specify the sample time ( -1 for inherited).

## Inputs and Outputs

This block has the following inputs:

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Vector | Contains the downrange position, the <br> crossrange position, and the altitude of the <br> vehicle in Earth coordinates. The number <br> indicates the vehicle number. |
| Second | Vector | Contains the Euler angles (roll, pitch, and yaw) <br> of the vehicle. The number indicates the vehicle <br> number. |

## See Also

Aero.Animation in the Aerospace Toolbox documentation

## Moments About CG Due to Forces

Compute moments about center of gravity due to forces applied at a point, not center of gravity

## Library

Mass Properties

## Description



The Moments about CG Due to Forces block computes moments about center of gravity due to forces that are applied at point CP , not at the center of gravity.

## Dialog Box

Function Block Parameters: Moments about CG due to Forces $x$

Moments About CG Due To Forces (mask) (link)
Compute moments about center of gravity due to forces which are applied at point CP not the center of gravity.
,

## Inputs and Outputs

| Input | Dimension Type |
| :--- | :--- |
| First | Description |
| Second | Contains the forces applied at point CP. |
| Third | Contains the center of gravity. |
|  | Contains the application point of forces. |


| Output | Dimension Type |
| :--- | :--- |
| First | Contains the moments at the center of gravity |
|  | in $x$-axes, $y$-axes and $z$-axes. |

## See Also

Aerodynamic Forces and Moments
Estimate Center of Gravity

## Moon Libration

Implement Moon librations

## Library

Environment/Celestial Phenomena


For a given Julian date, the Moon Libration block implements the Moon librations using Chebyshev coefficients. The block uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

Tip As Julian date input for the block, you can use the Julian Date Conversion block or the Aerospace Toolbox juliandate function to calculate the Julian date. You can also calculate your own Julian date and input it using the Constant block.

## Dialog Box



## Epoch

Select one of the following:

- Julian date

Julian date to calculate the Moon libration. When you select this option, the block has one input port.

- TO and elapsed Julian time

Julian date, specified by two block inputs:

- A fixed starting epoch (TO).
- Variable elapsed time between $T 0$ and the desired model simulation time.
$T 0$ plus the variable elapsed time cannot exceed the maximum Julian date for the specified Ephemerides.


## Ephemeris model

Select one of the following ephemerides models defined by the Jet Propulsion Laboratory.

| Ephemerides Model | Description |
| :--- | :--- |
| DE405 | Released in 1998. This ephemerides takes into account the Julian <br> date range 2305424.50 (December 9, 1599) to 2525008.50 (February <br> $20,2201)$. |
|  | This block implements these ephemerides with respect to the <br> International Celestial Reference Frame version 1.0, adopted in <br> 1998. |
| DE421 | Released in 2008. This ephemerides takes into account the Julian <br> date range 2414992.5 (December 4, 1899) to 2469808.5 (January 2, <br> 2050). <br> This block implements these ephemerides with respect to the |
|  | International Celestial Reference Frame version 1.0, adopted in <br> 1998. |
| DE423 | Released in 2010. This ephemerides takes into account the Julian <br> date range 2378480.5 (December 16, 1799) to 2524624.5 (February 1, <br> $2200)$. |
| DE430 | This block implements these ephemerides with respect to the <br> International Celestial Reference Frame version 2.0, adopted in <br> 2010. |
| Released in 2013. This ephemerides takes into account the Julian <br> date range 2287184.5 (December 21, 1549) to 2688976.5 (January <br> $25,2650) . ~$ |  |
| This block implements these ephemerides with respect to the <br> International Celestial Reference Frame version 2.0, adopted in <br> 2010. |  |

Note: This block requires that you download ephemeris data with the installer. Click the Get data button to start the installer. For more information, see aeroDataPackage.

## Action for out of range input

Specify the block behavior when the block inputs are out of range.

| Action | Description |
| :--- | :--- |
| None | No action. |
| Warning | Warning in the MATLAB Command Window, model <br> simulation continues. |
| Error (default) | MATLAB returns an exception, model simulation <br> stops. |

## Calculate rates

Select this check box to calculate the rate of the Moon libration and add a second block output.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Scalar | - Julian date ( $T_{J D}$ ) (default) - One input. Specify a date between the minimum and maximum Julian date. <br> - Fixed Julian date $\left(T 0_{J D}\right)$ plus the elapsed Julian time ( $\Delta T_{J D}$ ) between the fixed date and the ephemeris time. - Two inputs, where the first input is $T O_{J D}$ and the second input is $\Delta T_{J D} . \Delta T_{J D}$ must be a positive number. The sum of $T 0_{J D}$ and $\Delta T_{J D}$ must fall between the minimum and maximum Julian date. |
|  |  | The block Epoch parameter controls the number of block inputs. |
|  |  | See the Ephemerides parameter for the minimum and maximum Julian dates. |
| Second (Optional) | Scalar | $\Delta T_{J D}$ - Elapsed Julian time $\left(\Delta T_{J D}\right)$ between the fixed date and the ephemeris time. The sum of $T O_{J D}$ and $\Delta T_{J D}$ must fall between the minimum and maximum Julian date. |


| Input | Dimension Type | Description <br> See the Ephemerides parameter for the minimum <br> and maximum Julian date. |
| :--- | :--- | :--- |
| Output | Dimension Type | Description |
| First | Vector | Euler angles $(\varphi \theta \Psi)$ for Moon attitude. Units are <br> radians. |
| Second <br> (Optional) | Vector | Moon libration Euler angular rates ( $\omega$ ). Units are <br> radians/day. |

## References

Folkner, W. M., J. G. Williams, D. H. Boggs, "The Planetary and Lunar Ephemeris DE 421," IPN Progress Report 42-178, 2009.

Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.

## See Also

Direction Cosine Matrix ECI to ECEF | Earth Nutation | Julian Date Conversion | Planetary Ephemeris

## External Web Sites

- http://ssd.jpl.nasa.gov/?planet_eph_export
- http://syrte.obspm.fr/jsr/journees2010/powerpoint/folkner.pdf


# Non-Standard Day 210C 

Implement MIL-STD-210C climatic data

## Library

Environment/Atmosphere


The Non-Standard Day 210C block implements a portion of the climatic data of the MIL-STD-210C worldwide air environment to 80 km (geometric or approximately 262,000 feet geometric) for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output units selected from the Units list.

## Dialog Box

```
F. Function Block Parameters: Non-Standard Day 210C
Atmosphere Model (mask) (link)
Calculate various atmosphere models including 1976 COESA-extended U.S. Standard Atmosphere, MIL-HDBK-310, and MIL-STD-210C. Given geopotential altitude, calculate absolute temperature, pressure and density using standard interpolation formulas.
The COESA model extrapolates temperature linearly and pressure/density logarithmically beyond the range
\[
0<=\text { altitude <= } 84852 \text { meters (geopotential) }
\]
The MIL specifications are not extrapolated beyond their defined altitudes which are typically
\[
0<=\text { altitude }<=80000 \text { meters (geometric) }
\]
Depending on the given information either density or pressure is calculated using a perfect gas relationship.
The unit system selected applies to both input and outputs.
```



```
OK
Cancel
```



## Units

Specifies the input and output units:

| Units | Height | Temperature | Speed of Sound | Air Pressure | Air Density |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Metric <br> (MKS) | Meters | Kelvin | Meters per second | Pascal | Kilograms per <br> cubic meter |
| English <br> (Velocity <br> in ft/s) | Feet | Degrees <br> Rankine | Feet per second | Pound force per <br> square inch | Slug per cubic <br> foot |


| Units | Height | Temperature | Speed of Sound | Air Pressure | Air Density |
| :--- | :--- | :--- | :--- | :--- | :--- |
| English <br> (Velocity <br> in kts) | Feet | Degrees <br> Rankine | Knots | Pound force per <br> square inch | Slug per cubic <br> foot |

## Specification

Specify the atmosphere model type from one of the following atmosphere models. The default is MIL-STD-210C.

```
1 9 7 6 \text { COESA-extended U.S. Standard Atmosphere}
```

This selection is linked to the COESA Atmosphere Model block. See the block reference for more information.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the block reference for more information.

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the block reference for more information.

## Atmospheric model type

Select the representation of the atmospheric data.

| Profile | Realistic atmospheric profiles associated with extremes at specified <br> altitudes. Recommended for simulation of vehicles vertically <br> traversing the atmosphere or when the total influence of the <br> atmosphere is needed. |
| :--- | :--- |
| Envelope | Uses extreme atmospheric values at each altitude. Recommended <br> for vehicles only horizontally traversing the atmosphere without <br> much change in altitude. |

## Extreme parameter

Select the atmospheric parameter that is the extreme value.
High temperature $\quad$ Option always available

| Low temperature | Option always available |
| :--- | :--- |
| High density | Option always available |
| Low density | Option always available |
| High pressure | This option is available only when Envelope is <br> selected for Atmospheric model type |
| Low pressure | This option is available only when Envelope is <br> selected for Atmospheric model type |

## Frequency of occurrence

Select percent of time the values would occur.

| Extreme values | This option is available only when Envelope is selected for <br> Atmospheric model type. |
| :--- | :--- |
| $1 \%$ | Option always available |
| $5 \%$ | This option is available only when Envelope is selected for <br> Atmospheric model type. |
| $10 \%$ | Option always available |
| $20 \%$ | This option is available only when Envelope is selected for <br> Atmospheric model type. |

## Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the profile atmospheric model only.

| $5 \mathrm{~km}(16404 \mathrm{ft})$ |
| :--- | :--- |
| $10 \mathrm{~km}(32808 \mathrm{ft})$ |
| $20 \mathrm{~km}(65617 \mathrm{ft})$ |
| $30 \mathrm{~km}(98425 \mathrm{ft})$ |
| $40 \mathrm{~km}(131234 \mathrm{ft})$ |

## Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the geopotential height. |  |


| Output $\quad$ Dimension Type | Description |
| :--- | :--- |
| First | Contains the temperature. |
| Second | Contains the speed of sound. |
| Third | Contains the air pressure. |
| Fourth | Contains the air density. |

## Assumptions and Limitations

All values are held below the geometric altitude of 0 m ( 0 feet) and above the geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope atmospheric model has a few exceptions where values are held below the geometric altitude of 1 kilometer (approximately 3,281 feet) and above the geometric altitude of 30,000 meters (approximately 98,425 feet). These exceptions arise from lack of data in MIL-STD-210C for these conditions.

In general, temperature values are interpolated linearly, and density values are interpolated logarithmically. Pressure and speed of sound are calculated using a perfect gas law. The envelope atmospheric model has a few exceptions where the extreme value is the only value provided as an output. Pressure in these cases is interpolated logarithmically. These envelope atmospheric model exceptions apply to all cases of high and low pressure, high and low temperature, and high and low density, excluding the extreme values and $1 \%$ frequency of occurrence. These exceptions arise from lack of data in MIL-STD-210C for these conditions.

Another limitation is that climatic data for the region south of $60^{\circ} \mathrm{S}$ latitude is excluded from consideration in MIL-STD-210C.

This block uses the metric version of data from the MIL-STD-210C specifications. Certain data within the envelope are inconsistent between metric and English versions for low density, low temperature, high temperature, low pressure, and high pressure. The most significant differences occur in the following values:

- For low density envelope data with $5 \%$ frequency, the density values in metric units are inconsistent at 4 km and 18 km and the density values in English units are inconsistent at 14 km .
- For low density envelope data with $10 \%$ frequency,
- The density values in metric units are inconsistent at 18 km .
- The density values in English units are inconsistent at 14 km .
- For low density envelope data with $20 \%$ frequency, the density values in English units are inconsistent at 14 km .
- For low temperature envelope data with $20 \%$ frequency, the temperature values at 20 km are inconsistent.
- For high pressure envelope data with $10 \%$ frequency, the pressure values in metric units at 8 km are inconsistent.


## Reference

Global Climatic Data for Developing Military Products (MIL-STD-210C), 9 January 1987, Department of Defense, Washington, D.C.

## See Also

COESA Atmosphere Model
ISA Atmosphere Model
Non-Standard Day 310

# Non-Standard Day 310 

Implement MIL-HDBK-310 climatic data

## Library

Environment/Atmosphere


The Non-Standard Day 310 block implements a portion of the climatic data of the MIL-HDBK-310 worldwide air environment to 80 km (geometric or approximately 262,000 feet geometric) for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output units selected from the Units list.

## Dialog Box

```
Function Block Parameters: Non-Standard Day 310
 x
 Atmosphere Model (mask) (link)
Calculate various atmosphere models including 1976 COESA-extended U.S. Standard Atmosphere, MIL-HDBK-310, and MIL-STD-210C. Given geopotential altitude, calculate absolute temperature, pressure and density using standard interpolation formulas.
The COESA model extrapolates temperature linearly and pressure/density logarithmically beyond the range
\[
0<=\text { altitude <= } 84852 \text { meters (geopotential) }
\]
The MIL specifications are not extrapolated beyond their defined altitudes which are typically
\[
0<=\text { altitude }<=80000 \text { meters (geometric) }
\]
Depending on the given information either density or pressure is calculated using a perfect gas relationship.
The unit system selected applies to both input and outputs.
```




## Units

Specifies the input and output units:

| Units | Height | Temperature | Speed of Sound | Air Pressure | Air Density |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Metric <br> (MKS) | Meters | Kelvin | Meters per <br> second | Pascal | Kilograms per <br> cubic meter |
| English <br> (Velocity <br> in ft/s) | Feet | Degrees Rankine | Feet per second | Pound force <br> per square <br> inch | Slug per cubic <br> foot |


| Units | Height | Temperature | Speed of Sound | Air Pressure | Air Density |
| :--- | :--- | :--- | :--- | :--- | :--- |
| English <br> (Velocity <br> in kts) | Feet | Degrees Rankine | Knots | Pound force <br> per square <br> inch | Slug per cubic <br> foot |

## Specification

Specify the atmosphere model type from one of the following atmosphere models. The default is MIL-HDBK-310.

## 1976 COESA-extended U.S. Standard Atmosphere

This selection is linked to the COESA Atmosphere Model block. See the block reference for more information.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the block reference for more information.

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the block reference for more information.

## Atmospheric model type

Select the representation of the atmospheric data.

| Profile | Realistic atmospheric profiles associated with extremes at <br> specified altitudes. Recommended for simulation of vehicles <br> vertically traversing the atmosphere or when the total influence <br> of the atmosphere is needed. |
| :--- | :--- |
| Envelope | Uses extreme atmospheric values at each altitude. <br> Recommended for vehicles only horizontally traversing the <br> atmosphere without much change in altitude. |

## Extreme parameter

Select the atmospheric parameter which is the extreme value.

| High temperature | Option always available |
| :--- | :--- |


| Low temperature | Option always available |
| :--- | :--- |
| High density | Option always available |
| Low density | Option always available |
| High pressure | This option is available only when Envelope is <br> selected for Atmospheric model type. |
| Low pressure | This option is available only when Envelope is <br> selected for Atmospheric model type. |

## Frequency of occurrence

Select percent of time the values would occur.

| Extreme values | This option is available only when Envelope is selected for <br> Atmospheric model type. |
| :--- | :--- |
| $1 \%$ | Option always available |
| $5 \%$ | This option is available only when Envelope is selected for <br> Atmospheric model type. |
| $10 \%$ | Option always available |
| $20 \%$ | This option is available only when Envelope is selected for <br> Atmospheric model type. |

## Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the profile atmospheric model only.

| $5 \mathrm{~km}(16404 \mathrm{ft})$ |
| :--- | :--- |
| $10 \mathrm{~km}(32808 \mathrm{ft})$ |
| $20 \mathrm{~km}(65617 \mathrm{ft})$ |
| $30 \mathrm{~km}(98425 \mathrm{ft})$ |
| $40 \mathrm{~km}(131234 \mathrm{ft})$ |

## Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the geopotential height. |  |


| Output $\quad$ Dimension Type | Description |
| :--- | :--- |
| First | Contains the temperature. |
| Second | Contains the speed of sound. |
| Third | Contains the air pressure. |
| Fourth | Contains the air density. |

## Assumptions and Limitations

All values are held below the geometric altitude of 0 m ( 0 feet) and above the geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope atmospheric model has a few exceptions where values are held below the geometric altitude of 1 kilometer (approximately 3,281 feet) and above the geometric altitude of 30,000 meters (approximately 98,425 feet). These exceptions arise from lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are interpolated linearly, and density values are interpolated logarithmically. Pressure and speed of sound are calculated using a perfect gas law. The envelope atmospheric model has a few exceptions where the extreme value is the only value provided as an output. Pressure in these cases is interpolated logarithmically. These envelope atmospheric model exceptions apply to all cases of high and low pressure, high and low temperature, and high and low density, excluding the extreme values and $1 \%$ frequency of occurrence. These exceptions arise from lack of data in MIL-HDBK-310 for these conditions.

Another limitation is that climatic data for the region south of $60^{\circ} \mathrm{S}$ latitude is excluded from consideration in MIL-HDBK-310.

This block uses the metric version of data from the MIL-STD-310 specifications. Certain data within the envelope are inconsistent between metric and English versions for low density, low temperature, high temperature, low pressure, and high pressure. The most significant differences occur in the following values:

- For low density envelope data with $5 \%$ frequency, the density values in metric units are inconsistent at 4 km and 18 km and the density values in English units are inconsistent at 14 km .
- For low density envelope data with $10 \%$ frequency,
- The density values in metric units are inconsistent at 18 km .
- The density values in English units are inconsistent at 14 km .
- For low density envelope data with $20 \%$ frequency, the density values in English units are inconsistent at 14 km .
- For low temperature envelope data with $20 \%$ frequency, the temperature values at 20 km are inconsistent.
- For high pressure envelope data with $10 \%$ frequency, the pressure values in metric units at 8 km are inconsistent.


## Reference

Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23 June 1997, Department of Defense, Washington, D.C.

## See Also

COESA Atmosphere Model
ISA Atmosphere Model
Non-Standard Day 210C

## Nonlinear Second-Order Actuator

Implement second-order actuator with rate and deflection limits

## Library

Actuators


The Second Order Nonlinear Actuator block outputs the actual actuator position using the input demanded actuator position and other dialog box parameters that define the system.

## Dialog Box



## Natural frequency

The natural frequency of the actuator. The units of natural frequency are radians per second.

## Damping ratio

The damping ratio of the actuator. A dimensionless parameter.

## Maximum deflection

The largest actuator position allowable. The units of maximum deflection must be the same as the units of demanded actuator position.

## Minimum deflection

The smallest actuator position allowable. The units of minimum deflection must be the same as the units of demanded actuator position.

## Rate limit

The fastest speed allowable for actuator motion. The units of maximum rate must be the units of demanded actuator position per second.

## Initial position

The initial position of the actuator. The units of initial position must be the same as the units of demanded actuator position.

If the specified value is less than the value of Minimum deflection, the block sets the value of Minimum deflection as the initial position value. If the specified value is greater than the value of Maximum deflection, the block sets the value of Maximum deflection as the initial position value.

## Initial velocity

The initial velocity of the actuator. The units of initial velocity must be the same as the units of demanded actuator position per second.

If the absolute value of the specified value is greater than the absolute value of Rate Limit, this block sets the value of Rate Limit as the initial velocity value.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the demanded actuator position. |
| Output | Dimension Type | Description |
| First |  | Contains the actual actuator position. |

## Examples

See the Airframe \& Autopilot subsystem in the aero_guidance model and the Actuators subsystem in the aeroblk_HL20 model.

## See Also

Linear Second-Order Actuator

## NRLMSISE-00 Atmosphere Model

Implement mathematical representation of 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere

## Library

Environment/Atmosphere


The NRLMSISE-00 Atmosphere Model block implements the mathematical representation of the 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00) of the MSIS ${ }^{\circledR}$ class model. This block calculates the neutral atmosphere empirical model from the surface to lower exosphere ( 0 to $1,000,000$ meters). When configuring the block for this calculation, you can also take into account the anomalous oxygen, which can affect the satellite drag above 500,000 meters.

This block has the limitations of the NRLMSISE-00 model. For more information, see the NRLMSISE-00 model documentation.

Note: This block is valid only for altitudes between 0 and 1,000,000 meters (1,000 kilometers).

## Dialog Box

Function Block Parameters: NRLMSISE-00 Atmosphere Model
NRLMSISE-00 Model (mask) (link)
Implement the mathematical representation of the 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00). NRLMSISE-00 calculates the neutral atmosphere empirical model from the surface to lower exosphere ( 0 to $1,000,000$ meters) with the option of including contributions from anomalous oxygen which can affect satellite drag above 500,000 meters.

## Parameters

Units: Metric (MKS)
$\square$ Input local apparent solar time
$\square$ Input flux and magnetic index information
Source for flags: Internal
Flags:
ones $(1,23)$
$\square$ Include anomalous oxygen number density in total mass density
Action for out of range input: Warning


## Units

Specifies the input and output units:

| Units | Temperature | Height | Density |
| :--- | :--- | :--- | :--- |
| Metric (MKS) | Kelvin | Meters | $\mathrm{kg} / \mathrm{m}^{3}$, some <br> density outputs 1/ <br> $\mathrm{m}^{3}$ |
| English | Rankine | Feet | lbm/ft ${ }^{3}$, some <br> density outputs 1/ <br> $\mathrm{ft}^{3}$ |

## Input local apparent solar time

Select this check box to input the local apparent solar time, in hours. Otherwise, the block inputs the default value.

## Input flux and magnetic index information

Select this check box to input the 81-day average of F10.7, the daily F10.7 flux for the previous day, and the array of 7 magnetic index information (see the aph argument in the Aerospace Toolbox atmosnrlmsise00 function). Otherwise, the block inputs the default value.

## Source for flags

Specify the variation flag source. If you specify External, you must enter the variation flag as an array of 23 . If you specify Internal, the flag source is internal to the block.

## Flags

Specify the variation flag as an array of 23 . This parameter applies only when Source for flags has a value of Internal. You can specify one of the following values for a field. The default value for each field is 1 .

- 0.0

Removes that value's effect on the output.

- 1.0

Applies the main and the cross-term effects of that value on the output.

- 2.0

Applies only the cross-term effect of that value on the output.
The array has the following fields.

| Field | Description |
| :--- | :--- |
| Flags (1) | F10.7 effect on mean |
| Flags (2) | Independent of time |
| Flags (3) | Symmetrical annual |
| Flags (4) | Symmetrical semiannual |
| Flags (5) | Asymmetrical annual |


| Field | Description |
| :--- | :--- |
| Flags (6) | Asymmetrical semiannual |
| Flags (7) | Diurnal |
| Flags (8) | Semidiurnal |
| Flags (9) | Daily AP. If you set this field to -1, the block uses the entire <br> matrix of magnetic index information (APH) instead of <br> APH : , 1) |
| Flags (10) | All UT, longitudinal effects |
| Flags(11) | Longitudinal |
| Flags(12) | UT and mixed UT, longitudinal |
| Flags(13) | Mixed AP, UT, longitudinal |
| Flags(14) | Terdiurnal |
| Flags (15) | Departures from diffusive equilibrium |
| Flags (16) | All exospheric temperature variations |
| Flags (17) | All variations from 120,000 meter temperature (TLB) |
| Flags(18) | All lower thermosphere (TN1) temperature variations |
| Flags(19) | All 120,000 meter gradient (S) variations |
| Flags (20) | All upper stratosphere (TN2) temperature variations |
| Flags (21) | All variations from 120,000 meter values (ZLB) |
| Flags (22) | All lower mesosphere temperature (TN3) variations |
| Flags (23) | Turbopause scale height variations |

## Include anomalous oxygen number density in total mass density

Select this check box to take into account the anomalous oxygen when calculating the neutral atmosphere empirical model from the surface to lower exosphere ( 0 to $1,000,000$ meters). Taking into account this number can affect the satellite drag above 500,000 meters.

## Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Three-element matrix | Contains geodetic latitudes, in degrees, longitude, in degrees, and altitude, in selected length units. |
| Second | Array | Contains $N$ years. |
| Third | Array | Contains $N$ days of a year (1 to 365 (or 366)). |
| Fourth | Array | Contains $N$ seconds in a day, in universal time (UT). |
| Fifth <br> (Optional) | Array | Contains $N$ local apparent solar time, in hours. |
| Sixth (Optional) | Array | Contains N 81-day average of F10.7 flux, centered on day of year (doy). |
| Seventh <br> (Optional) | Array | Contains $N$ daily F10.7 flux for previous day. |
| Eight <br> (Optional) | $N$-by-7 array | Contains an array of $N$-by- 7 of magnetic index information. If you specify magneticIndex, you must also specify f107Average and f107Daily. This information consists of: <br> Daily magnetic index (AP) <br> 3 hour AP for current time <br> 3 hour AP for 3 hours before current time <br> 3 hour AP for 6 hours before current time <br> 3 hour AP for 9 hours before current time <br> Average of eight 3 hour AP indices from 12 to 33 hours before current time <br> Average of eight 3 hour AP indices from 36 to 57 hours before current time <br> The effects of daily magnetic index are not large or established below $80,000 \mathrm{~m}$. As a result, the function sets the default value to 4 . See the limitations in Description for more information. |
| Ninth (Optional) | Array of 23 | Contains flags to enable or disable particular variations for the outputs. See following table. |

These flags, associated with the ninth input, enable or disable particular variations for the outputs.

| Field | Description |
| :--- | :--- |
| Flags (1) | F10.7 effect on mean |
| Flags (2) | Independent of time |
| Flags (3) | Symmetrical annual |
| Flags (4) | Symmetrical semiannual |
| Flags (5) | Asymmetrical annual |
| Flags (6) | Asymmetrical semiannual |
| Flags (7) | Diurnal |
| Flags (8) | Semidiurnal |
| Flags (9) | Daily AP. If you set this field to -1, the block uses the entire matrix of <br> magnetic index information (APH) instead of APH ( : 1) |
| Flags (10) | All UT, longitudinal effects |
| Flags (11) | Longitudinal |
| Flags (12) | UT and mixed UT, longitudinal |
| Flags (13) | Mixed AP, UT, longitudinal |
| Flags (14) | Terdiurnal |
| Flags (15) | Departures from diffusive equilibrium |
| Flags (16) | All exospheric temperature variations |
| Flags (17) | All variations from 120,000 meter temperature (TLB) |
| Flags (18) | All lower thermosphere (TN1) temperature variations |
| Flags (19) | All 120,000 meter gradient (S) variations |
| Flags (20) | All upper stratosphere (TN2) temperature variations |
| Flags (21) | All variations from 120,000 meter values (ZLB) |
| Flags (22) | All lower mesosphere temperature (TN3) variations |
| Flags (23) | Turbopause scale height variations |

The outputs are:

| Output | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Array | Contains $N$-by-2 values of temperature, in <br> selected temperature units. The first column |


| Output | Dimension Type | Description <br> is exospheric temperature, the second column <br> is temperature at altitude. |
| :--- | :--- | :--- |
| Second | Array | Contains $N$-by- 9 values of densities in selected <br> density units. See the following table: |

These densities are associated with the second output.

| Density | Description |
| :--- | :--- |
| Density (1) | Density of He |
| Density (2) | Density of O |
| Density (3) | Density of N2 |
| Density (4) | Density of O2 |
| Density (5) | Density of Ar |
| Density (6) | Total mass density <br> Density (6), total mass density, is defined as the sum of the mass <br> densities of He, O, N2, O2, Ar, H, and N. Optionally, Density (6) <br> can include the mass density of anomalous oxygen making <br> Density (6), the effective total mass density for drag. |
| Density (7) | Density of H |
| Density (8) | Density of N |
| Density (9) | Anomalous oxygen number density |

## Assumptions and Limitations

The F107 and F107A values that are used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU . The following site provides both classes of values:

- ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/
- ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/

The format for the data indices for these values are located here:
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/kp_ap.fmt

## References

http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html

# Pack net_fdm Packet for FlightGear 

Generate net_fdm packet for FlightGear

## Library

Animation/Flight Simulator Interfaces

## Description



The Pack net_fdm Packet for FlightGear block creates, from separate inputs, a FlightGear net_fdm data packet compatible with a particular version of FlightGear flight simulator. All the signals supported by the FlightGear net_fdm data packet are supported by this block. The signals are arranged into six groups. Any group can be turned on or off. Zeros are inserted for packet values that are part of inactive signal groups.

See "Inputs and Outputs" on page 4-455 for details on signals and signal groups.

## Dialog Box



## FlightGear version

Select your FlightGear software version: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10, v1.0, v1.9.1, v2.0, v2.4, v2.6, v2.8, v2.10, v2.12, v3.0.

Note: If you are using a FlightGear version older than 2.0, the model displays a notification from the Simulink Upgrade Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more information, see "Supported FlightGear Versions".

## Show position/altitude inputs

Select this check box to include the position and altitude inputs (signal group 1) into the FlightGear net_fdm data packet.
Show velocity/acceleration inputs
Select this check box to include the velocity and acceleration inputs (signal group 2) into the FlightGear net_fdm data packet.

## Show control surface position inputs

Select this check box to include the control surface position inputs (signal group 3) into the FlightGear net_fdm data packet.

## Show engine/fuel inputs

Select this check box to include the engine and fuel inputs (signal group 4) into the FlightGear net_fdm data packet.

## Show landing gear inputs

Select this check box to include the landing gear inputs (signal group 5) into the FlightGear net_fdm data packet.

## Show environment inputs

Select this check box to include the environment inputs (signal group 6) into the FlightGear net_fdm data packet.

## Sample time

Specify the sample time ( -1 for inherited).

## Inputs and Outputs

## Input Signals Supported for FlightGear 0.9.3

This table lists all the input signals supported for Version 0.9.3:

## Signal Group 1: ShowPositionAttitudelnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{l}$ | rad | double | 1 | Geodetic longitude |
| $\mu$ | rad | double | 1 | Geodetic altitude |
| $h$ | m | double | 1 | Altitude above sea level |
| $\Phi$ | rad | single | 1 | Roll |
| $\Theta$ | rad | single | 1 | Pitch |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| $\Psi$ | rad | single | 1 | Yaw or true heading |

Signal Group 2: ShowVelocityAccelerationInputs

| Name | Units | Type | Width | Description |
| :---: | :---: | :---: | :---: | :---: |
| dФ/dt | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Roll rate |
| d $\Phi$ /dt | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Pitch rate |
| d $\Psi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Yaw rate |
| vcas | kts | single | 1 | Calibrated airspeed |
| climb_rate | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Climb rate |
| v_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | North velocity in local/body frame |
| v_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | East velocity in local/body frame |
| v_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Down/vertical velocity in local/body frame |
| v_wind_body_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body north velocity relative to local airmass |
| v_wind_body_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body east velocity relative to local airmass |
| v_wind_body_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body down/vertical velocity relative to local airmass |
| stall_warning | - | single | 1 | $0.0-1.0$, indicating the amount of stall |
| A_X_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | X acceleration in body frame |
| A_Y_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Y acceleration in body frame |
| A_Z_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Z acceleration in body frame |

Signal Group 3: ShowControlSurfacePositionInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| elevator | geometry- <br> specific units | single | 1 | Elevator position |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| flaps | geometry- <br> specific units | single | 1 | Flaps position |
| left_aileron | geometry- <br> specific units | single | 1 | Left aileron position |
| right_aileron | geometry- <br> specific units | single | 1 | Right aileron position |
| rudder | geometry- <br> specific units | single | 1 | Rudder position |
| speedbrake | geometry- <br> specific units | single | 1 | Speed brake position |
| spoilers | geometry- <br> specific units | single | 1 | Spoilers position |

## Signal Group 4: ShowEngineFuellnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_engines | - | int32 | 1 | Number of valid engines |
| eng_state | enum | int32 | 4 | Engine state (0=off, <br> $1=$ cranking, $2=$ running $)$ |
| rpm | $\mathrm{rev} / \mathrm{min}$ | single | 4 | Engine RPM |
| fuel_flow | $\mathrm{gal} / \mathrm{hr}$ | single | 4 | Fuel flow |
| EGT | ${ }^{\circ} \mathrm{F}$ | single | 4 | Exhaust gas temp |
| oil_temp | ${ }^{\circ} \mathrm{F}$ | single | 4 | Oil temp |
| oil_px | lbf/in ${ }^{2}$ | single | 4 | Oil pressure |
| num_tanks | - | int32 | 1 | Max number of fuel tanks |
| fuel_quantity | - | single | 4 | Amount of fuel in tanks $(0-1$ <br> fraction $)$ |

Signal Group 5: ShowLandingGearInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_wheels | - | int32 | 1 | Maximum number of wheels |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| wow | - | boolean | 3 | Weight on wheels signal <br> (1=wheel is on ground) |
| gear_pos | - | single | 3 | Landing gear position (0-1, <br> indicating amount deployed) |
| gear_steer | - | single | 3 | Landing gear steering angle |
| gear_compression | - | single | 3 | Landing gear compression |

Signal Group 6: ShowEnvironmentlnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| agl | m | single | 1 | Above ground level |
| cur_time | sec | int32 | 1 | Current UNIX ${ }^{\circledR}$ time |
| warp | sec | int32 | 1 | Offset in seconds to UNIX <br> time |
| visibility | m | single | 1 | Visibility in meters (for <br> visual effects) |

## Input Signals Supported for FlightGear 0.9.8/0.9.8a

This table lists all the input signals supported for Versions 0.9.8/0.9.8a:

## Signal Group 1: ShowPositionAttitudelnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| $l$ | rad | double | 1 | Geodetic longitude |
| $\mu$ | rad | double | 1 | Geodetic altitude |
| $h$ | m | double | 1 | Altitude above sea level |
| $\Phi$ | rad | single | 1 | Roll |
| $\Theta$ | rad | single | 1 | Pitch |
| $\Psi$ | rad | single | 1 | Yaw or true heading |

[^1]| Name | Units | Type | Width | Description |
| :---: | :---: | :---: | :---: | :---: |
| a | rad | single | 1 | Angle of attack |
| 8 | rad | single | 1 | sideslip angle |
| $\mathrm{d} \Phi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Roll rate |
| d $\Phi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Pitch rate |
| d $\Psi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Yaw rate |
| vcas | kts | single | 1 | Calibrated airspeed |
| climb_rate | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Climb rate |
| v_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | North velocity in local/body frame |
| v_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | East velocity in local/body frame |
| v_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Down/vertical velocity in local/body frame |
| v_wind_body_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body north velocity relative to local airmass |
| v_wind_body_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body east velocity relative to local airmass |
| v_wind_body_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body down/vertical velocity relative to local airmass |
| A_X_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | X acceleration in body frame |
| A_Y_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Y acceleration in body frame |
| A_Z_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Z acceleration in body frame |
| stall_warning | - | single | 1 | $0.0-1.0$, indicating the amount of stall |
| slip_deg | deg | single | 1 | Slip ball deflection |

## Signal Group 3: ShowControlSurfacePositionInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| elevator | geometry- <br> specific units | single | 1 | Elevator position |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| elevator_trim_tab | geometry- <br> specific units | single | 1 | Elevator trim position |
| left_flap | geometry- <br> specific units | single | 1 | Left flap position |
| right_flap | geometry- <br> specific units | single | 1 | Right flap position |
| left_aileron | geometry- <br> specific units | single | 1 | Left aileron position |
| right_aileron | geometry- <br> specific units | single | 1 | Right aileron position |
| rudder | geometry- <br> specific units | single | 1 | Rudder position |
| nose_wheel | geometry- <br> specific units | single | 1 | Nose wheel position |
| speedbrake | geometry- <br> specific units | single | 1 | Speed brake position |
| spoilers | geometry- <br> specific units | single | 1 | Spoilers position |

Signal Group 4: ShowEngineFuellnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_engines | - | int32 | 1 | Number of valid engines |
| eng_state | enum | int32 | 4 | Engine state $(0=$ off, <br> $1=$ cranking, 2=running $)$ |
| rpm | rev/min | single | 4 | Engine RPM |
| fuel_flow | $\mathrm{gal} / \mathrm{hr}$ | single | 4 | Fuel flow |
| EGT | ${ }^{\circ} \mathrm{F}$ | single | 4 | Exhaust gas temp |
| cht | ${ }^{\circ} \mathrm{F}$ | single | 4 | Cylinder head temperature |
| mp_osi | psi | single | 4 | Manifold pressure |
| tit | ${ }^{\circ} \mathrm{F}$ | single | 4 | Turbine inlet temperature |
| oil_temp | ${ }^{\circ} \mathrm{F}$ | single | 4 | Oil temp |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| oil_px | lbf/in ${ }^{2}$ | single | 4 | Oil pressure |
| num_tanks | - | int32 | 1 | Max number of fuel tanks |
| fuel_quantity | - | single | 4 | Amount of fuel in tanks (0- <br> 1 fraction) |

## Signal Group 5: ShowLandingGearlnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_wheels | - | int32 | 1 | Maximum number of wheels |
| wow | - | boolean | 3 | Weight on wheels signal <br> (1=wheel is on ground) |
| gear_pos | single | 3 | Landing gear position (0-1, <br> indicating amount deployed) |  |
| gear_steer | - | single | 3 | Landing gear steering angle |
| gear_compression | - | single | 3 | Landing gear compression |

## Signal Group 6: ShowEnvironmentlnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| agl | m | single | 1 | Above ground level |
| cur_time | sec | int32 | 1 | Current UNIX time |
| warp | sec | int32 | 1 | Offset in seconds to UNIX <br> time |
| visibility | m | single | 1 | Visibility in meters (for <br> visual effects) |

## Input Signals Supported for FlightGear 0.9.9

This table lists all the input signals supported for Version 0.9.9:

## Signal Group 1: ShowPositionAttitudelnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| $l$ | rad | double | 1 | Geodetic longitude |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| $\mu$ | rad | double | 1 | Geodetic latitude |
| $h$ | m | double | 1 | Altitude above sea level |
| $\Phi$ | rad | single | 1 | Roll |
| $\Theta$ | rad | single | 1 | Pitch |
| $\Psi$ | rad | single | 1 | Yaw or true heading |

Signal Group 2: ShowVelocityAccelerationInputs

| Name | Units | Type | Width | Description |
| :---: | :---: | :---: | :---: | :---: |
| a | rad | single | 1 | Angle of attack |
| 8 | rad | single | 1 | sideslip angle |
| dФ/dt | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Roll rate |
| dФ/dt | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Pitch rate |
| d $\Psi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Yaw rate |
| vcas | kts | single | 1 | Calibrated airspeed |
| climb_rate | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Climb rate |
| v_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | North velocity in local/body frame |
| v_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | East velocity in local/body frame |
| v_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Down/vertical velocity in local/body frame |
| v_wind_body_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body north velocity relative to local airmass |
| v_wind_body_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body east velocity relative to local airmass |
| v_wind_body_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body down/vertical velocity relative to local airmass |
| A_X_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | X acceleration in body frame |
| A_Y_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Y acceleration in body frame |
| A_Z_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Z acceleration in body frame |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| stall_warning | - | single | 1 | 0.0-1.0, indicating the <br> amount of stall |
| slip_deg | deg | single | 1 | Slip ball deflection |

## Signal Group 3: ShowControlSurfacePositionInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| elevator | geometry- <br> specific units | single | 1 | Elevator position |
| elevator_trim_tab | geometry- <br> specific units | single | 1 | Elevator trim position |
| left_flap | geometry- <br> specific units | single | 1 | Left flap position |
| right_flap | geometry- <br> specific units | single | 1 | Right flap position |
| left_aileron | geometry- <br> specific units | single | 1 | Left aileron position |
| right_aileron | geometry- <br> specific units | single | 1 | Right aileron position |
| rudder | geometry- <br> specific units | single | 1 | Rudder position |
| nose_wheel | geometry- <br> specific units | single | 1 | Nose wheel position |
| speedbrake | geometry- <br> specific units | single | 1 | Speed brake position |
| spoilers | geometry- <br> specific units | single | 1 | Spoilers position |

## Signal Group 4: ShowEngineFuellnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_engines | - | uint32 | 1 | Number of valid engines |
| eng_state | enum | uint32 | 4 | Engine state $(0=$ off, <br> $1=$ cranking, $2=$ running $)$ |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| rpm | $\mathrm{rev} / \mathrm{min}$ | single | 4 | Engine RPM |
| fuel_flow | $\mathrm{gal} / \mathrm{hr}$ | single | 4 | Fuel flow |
| EGT | ${ }^{\circ} \mathrm{F}$ | single | 4 | Exhaust gas temp |
| cht | ${ }^{\circ} \mathrm{F}$ | single | 4 | Cylinder head temperature |
| mp_osi | psi | single | 4 | Manifold pressure |
| tit | ${ }^{\circ} \mathrm{F}$ | single | 4 | Turbine inlet temperature |
| oil_temp | ${ }^{\circ} \mathrm{F}$ | single | 4 | Oil temp |
| oil_px | lbf/in ${ }^{2}$ | single | 4 | Oil pressure |
| num_tanks | - | uint32 | 1 | Max number of fuel tanks |
| fuel_quantity | - | single | 4 | Amount of fuel in tanks $(0-$ <br> 1 fraction $)$ |

## Signal Group 5: ShowLandingGearInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_wheels | - | uint32 | 1 | Maximum number of wheels |
| wow | - | uint32 | 3 | Weight on wheels signal <br> (1=wheel is on ground) |
| gear_pos | - | single | 3 | Landing gear position (0-1, <br> indicating amount deployed) |
| gear_steer | - | single | 3 | Landing gear steering angle |
| gear_compression | - | single | 3 | Landing gear compression |

## Signal Group 6: ShowEnvironmentInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| agl | m | single | 1 | Above ground level |
| cur_time | sec | uint32 | 1 | Current UNIX time |
| warp | sec | int32 | 1 | Offset in seconds to UNIX <br> time |
| visibility | m | single | 1 | Visibility in meters (for <br> visual effects) |

Input Signals Supported for FlightGear
0.9.10/1.0/1.9.1/2.0/2.4/2.6/2.8/2.10/2.12/3.0

This table lists all the input signals supported for Version 0.9.10, 1.0, 1.9.1, 2.0, 2.4, 2.6, $2.8,2.10,2.12$, and 3.0:

## Signal Group 1: ShowPositionAttitudelnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| $l$ | rad | double | 1 | Geodetic longitude |
| $\mu$ | rad | double | 1 | Geodetic latitude |
| $h$ | m | double | 1 | Altitude above sea level |
| $\Phi$ | rad | single | 1 | Roll |
| $\Theta$ | rad | single | 1 | Pitch |
| $\Psi$ | rad | single | 1 | Yaw or true heading |

Signal Group 2: ShowVelocityAccelerationInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| a | rad | single | 1 | Angle of attack |
| B | rad | single | 1 | sideslip angle |
| $\mathrm{d} \Phi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Roll rate |
| $\mathrm{d} \Phi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Pitch rate |
| $\mathrm{d} \Psi / \mathrm{dt}$ | $\mathrm{rad} / \mathrm{sec}$ | single | 1 | Yaw rate |
| vcas | kts | single | 1 | Calibrated airspeed |
| climb_rate | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Climb rate |
| v_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | North velocity in local/body <br> frame |
| v_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | East velocity in local/body <br> frame |
| v_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Down/vertical velocity in <br> local/body frame |
| v_wind_body_north | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body north velocity relative <br> to local airmass |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| v_wind_body_east | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body east velocity relative <br> to local airmass |
| v_wind_body_down | $\mathrm{ft} / \mathrm{sec}$ | single | 1 | Body down/vertical velocity <br> relative to local airmass |
| A_X_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | X acceleration in body <br> frame |
| A_Y_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Y acceleration in body <br> frame |
| A_Z_pilot | $\mathrm{ft} / \mathrm{sec}^{2}$ | single | 1 | Z acceleration in body <br> frame |
| stall_warning | - | single | 1 | 0.0-1.0, indicating the <br> amount of stall |
| slip_deg | deg | single | 1 | Slip ball deflection |

Signal Group 3: ShowControlSurfacePositionInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| elevator | geometry- <br> specific units | single | 1 | Elevator position |
| elevator_trim_tab | geometry- <br> specific units | single | 1 | Elevator trim position |
| left_flap | geometry- <br> specific units | single | 1 | Left flap position |
| right_flap | geometry- <br> specific units | single | 1 | Right flap position |
| left_aileron | geometry- <br> specific units | single | 1 | Left aileron position |
| right_aileron | geometry- <br> specific units | single | 1 | Right aileron position |
| rudder | geometry- <br> specific units | single | 1 | Rudder position |
| nose_wheel | geometry- <br> specific units | single | 1 | Nose wheel position |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| speedbrake | geometry- <br> specific units | single | 1 | Speed brake position |
| spoilers | geometry- <br> specific units | single | 1 | Spoilers position |

## Signal Group 4: ShowEngineFuellnputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_engines | - | uint32 | 1 | Number of valid engines |
| eng_state | enum | uint32 | 4 | Engine state (0=off, <br> $1=$ cranking, $2=$ running $)$ |
| rpm | rev/min | single | 4 | Engine RPM |
| fuel_flow | $\mathrm{gal} / \mathrm{hr}$ | single | 4 | Fuel flow |
| fuel_px | psi | single | 4 | Fuel pressure |
| EGT | ${ }^{\circ} \mathrm{F}$ | single | 4 | Exhaust gas temp |
| cht | ${ }^{\circ} \mathrm{F}$ | psi | single | 4 |
| mp_osi | ${ }^{\circ} \mathrm{F}$ | single | 4 | Cylinder head temperature |
| tit | ${ }^{\circ} \mathrm{F}$ | single | 4 | Ourbine inlet temperature |
| oil_temp | lbf/in ${ }^{2}$ | single | 4 | Oil pressure |
| oil_px | - | uint32 | 1 | Max number of fuel tanks |
| num_tanks | - | single | 4 | Amount of fuel in tanks $(0-1$ <br> fraction $)$ |
| fuel_quantity | - |  | 4 |  |

## Signal Group 5: ShowLandingGearInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| num_wheels | - | uint32 | 1 | Maximum number of <br> wheels |
| wow | - | uint32 | 3 | Weight on wheels signal <br> (1=wheel is on ground $)$ |


| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| gear_pos | - | single | 3 | Landing gear position <br> (0-1, indicating amount <br> deployed) |
| gear_steer | - | single | 3 | Landing gear steering <br> angle |
| gear_compression | - | single | 3 | Landing gear compression |

## Signal Group 6: ShowEnvironmentInputs

| Name | Units | Type | Width | Description |
| :--- | :--- | :--- | :--- | :--- |
| agl | m | single | 1 | Above ground level |
| cur_time | sec | uint32 | 1 | Current UNIX time |
| warp | sec | int32 | 1 | Offset in seconds to UNIX <br> time |
| visibility | m | single | 1 | Visibility in meters (for <br> visual effects) |

## Output Signal

The output signal is the FlightGear net_fdm data packet.

## Examples

See asbhl20 for an example of this block.

## See Also

FlightGear Preconfigured 6DoF Animation
Generate Run Script
Send net_fdm Packet to FlightGear
Unpack net_ctrl Packet from FlightGear

## Pilot Joystick

Provide joystick interface on Windows platform

## Library

Animation/Animation Support Utilities


The Pilot Joystick block provides a pilot joystick interface for a Windows platform. Roll, pitch, yaw, and throttle are mapped to the joystick $X, Y, R$, and $Z$ channels respectively.

You can also configure the block to output all channels by setting the Output configuration parameter to AllOutputs.

This block does not produce deployable code.

## Dialog Box



## Joystick ID

Specify the joystick ID: Joystick 1, Joystick 2, or None.

## Output configuration

Specify the output configuration: FourAxis or AllOutputs (see Pilot Joystick All). FourAxis is the default.

## Sample time

Specify the sample time ( -1 for inherited).

## Inputs and Outputs

The block has the following outputs.

## Four Axis Mode (All Double Precision Values)

| Port Number | Output Range | Joystick | Description |
| :--- | :--- | :--- | :--- |
| 1 | $[-1,1]$ | $[$ left, right $]$ | Roll command |
| 2 | $[-1,1]$ | $[$ forward/down, back/ | Pitch command |
| 3 | $[-1,1]$ | up] |  |
| 4 | $[0,1]$ | $[$ left, right $]$ | Yaw command |
| 4 | $[\min , \max ]$ | Throttle command |  |

## All Outputs Mode (All Values Double Precision, Except for Buttons)

| Port Number | Array Number | Channel | Output Range | Joystick | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | X | [-1, 1] | [left, right] | Roll command |
| 1 | 2 | Y | $[-1,1]$ | [forward/down, back/up] | Pitch command |
| 1 | 3 | Z | [ 0,1 ] | [min, max] | Throttle command |
| 1 | 4 | R | [-1, 1] | [left, right] | Yaw command |
| 1 | 5 | U | [ 0,1 ] | [min, max] | U channel value |
| 1 | 6 | V | [0,1] | [min, max] | V channel value |
| 2 |  | buttons |  |  | uint32 flagword containing up to 32 button states. Bit 0 is button 1 , etc. |
| 3 |  | POV |  |  | Point-of-view hat value in degrees as a double. Zero degrees is straight ahead, 90 is to the left, etc. |

Output values are $[-1,1]$ for centered values, $[0,1]$ for noncentered values, and uint32 for the buttons in All Outputs mode. Output sense is positive for right-hand rule rotations on centered values (roll, pitch, and yaw).

## Assumptions and Limitations

If the joystick does not support an $R$ (rudder or "twist") channel, yaw output is set to zero. Outputs are of type double except for the buttons output in AllOutputs mode, which is a uint 32 flagword of bits. On non-Windows platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by FlightGear's joystick interface.

## See Also

Pilot Joystick All, Simulation Pace

## Pilot Joystick All

Provide joystick interface in All Outputs configuration on Windows platform

## Library

Animation/Animation Support Utilities


The Pilot Joystick All block provides a pilot joystick interface for a Windows platform. Analog is mapped to the joystick X, Y, Z, R, U, and V channels. Buttons and POV are mapped to up to 32 joystick button states and the joystick point-of-view hat.

You can also configure the block to output four axes by setting the Output configuration parameter to FourAxis.

This block does not produce deployable code.

## Dialog Box



## Joystick ID

Specify the joystick ID: Joystick 1, Joystick 2, or None.

## Output configuration

Specify the output configuration: FourAxis (see Pilot Joystick) or AllOutputs. AllOutputs is the default.

## Sample time

Specify the sample time ( -1 for inherited).

## Inputs and Outputs

The block has the following outputs.

## Four Axis Mode (All Double Precision Values)

| Port Number | Output Range | Joystick | Description |
| :--- | :--- | :--- | :--- |
| 1 | $[-1,1]$ | $[$ left, right $]$ | Roll command |
| 2 | $[-1,1]$ | $[$ forward/down, back/ | Pitch command |
| 3 | $[-1,1]$ | up $]$ | $[$ left, right $]$ |

## All Outputs Mode (All Values Double Precision, Except for Buttons)

| Port Number | Array Number | Channel | Output Range | Joystick | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | X | [-1, 1] | [left, right] | Roll command |
| 1 | 2 | Y | $[-1,1]$ | [forward/down, back/up] | Pitch command |
| 1 | 3 | Z | [ 0,1 ] | [min, max] | Throttle command |
| 1 | 4 | R | $[-1,1]$ | [left, right] | Yaw command |
| 1 | 5 | U | [ 0,1$]$ | [min, max] | U channel value |
| 1 | 6 | V | [0,1] | [min, max] | V channel value |
| 2 |  | buttons |  |  | uint32 flagword containing up to 32 button states. Bit 0 is button 1, etc. |
| 3 |  | POV |  |  | Point-of-view hat value in degrees as a double. Zero degrees is straight ahead, 90 is to the left, etc. |

Output values are $[-1,1]$ for centered values, $[0,1]$ for noncentered values, and uint32 for the buttons in All Outputs mode. Output sense is positive for right-hand rule rotations on centered values (roll, pitch, and yaw).

## Assumptions and Limitations

If the joystick does not support an $R$ (rudder or "twist") channel, yaw output is set to zero. Outputs are of type double except for the buttons output in AllOutputs mode, which is a uint32 flagword of bits. On non-Windows platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by FlightGear's joystick interface.

## See Also

Pilot Joystick, Simulation Pace

## Planetary Ephemeris

Implement position and velocity of astronomical objects

## Library

Environment/Celestial Phenomena


The Planetary Ephemeris block uses Chebyshev coefficients to implement the position and velocity of the target object relative to the specified center object for a given Julian date. The Target parameter specifies an astronomical object. The block implements the ephemerides using the Center parameter for an astronomical object as the reference.

The block uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

Tip As Julian date input for the block, you can use the Julian Date Conversion block or the Aerospace Toolbox juliandate function to calculate the Julian date. You can also calculate your own Julian date and input it using the Constant block.

This block implements the position and velocity using the International Celestial Reference Frame. If you want the planetary ephemeris position value relative to Earth in Earth-fixed (ECEF) coordinates, use the Direction Cosine Matrix ECI to ECEF block.

## Dialog Box



## Units

Specify the output units:

| Units | Position | Velocity |
| :--- | :--- | :--- |
| $\mathrm{km}, \mathrm{km} / \mathrm{s}$ | km | $\mathrm{km} / \mathrm{s}$ |
| $\mathrm{Au}, \mathrm{AU} /$ day | astronomical units (AU) | $\mathrm{AU} /$ day |

## Epoch

Select one of the following:

- Julian date

Julian date to implement the position and velocity of the Target object. When this option is selected, the block has one input port.

- TO and elapsed Julian time

Julian date, specified by two block inputs:

- A fixed starting epoch (T0).
- Variable elapsed time between T0 and the desired model simulation time.

T0 plus the variable elapsed time cannot exceed the maximum Julian date for the specified Ephemerides.

## Ephemeris model

Select one of the following ephemerides models defined by the Jet Propulsion Laboratory.

| Ephemerides Model | Description |
| :---: | :---: |
| DE405 | Released in 1998. This ephemerides takes into account the Julian date range 2305424.50 (December 9, 1599 ) to 2525008.50 (February 20, 2201). <br> This block implements these ephemerides with respect to the International Celestial Reference Frame version 1.0, adopted in 1998. |
| DE421 | Released in 2008. This ephemerides takes into account the Julian date range 2414992.5 (December 4, 1899) to 2469808.5 (January 2, 2050). <br> This block implements these ephemerides with respect to the International Celestial Reference Frame version 1.0, adopted in 1998. |
| DE423 | Released in 2010. This ephemerides takes into account the Julian date range 2378480.5 (December 16, 1799) to 2524624.5 (February 1, 2200). <br> This block implements these ephemerides with respect to the International Celestial Reference Frame version 2.0, adopted in 2010. |
| DE430 | Released in 2013. This ephemerides takes into account the Julian date range 2287184.5 (December 21, 1549) to 2688976.5 (January 25, 2650). <br> This block implements these ephemerides with respect to the International Celestial Reference Frame version 2.0, adopted in 2010. |

Note: This block requires that you download ephemeris data with the installer. Click the Get data button to start the installer. For more information, see aeroDataPackage.

## Center

Select a center body (astronomical object) or reference body as a point of reference for the Target barycenter position and velocity measurement.

## Target

Select a target body (astronomical object) or reference body as a point of reference for the barycenter position and velocity measurement.

## Action for out of range input

Specify the block behavior when the block inputs are out of range.

| Action | Description |
| :--- | :--- |
| None | No action. |
| Warning | Warning in the MATLAB Command Window, model <br> simulation continues. |
| Error (default) | MATLAB returns an exception, model simulation <br> stops. |

## Calculate velocity

Select this check box to calculate the velocity of the Target barycenter relative to the Center barycenter and add a second block output.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Scalar | - Julian date ( $T_{J D}$ ) (default) - One input. Specify a date between the minimum and maximum Julian date. <br> - Fixed Julian date ( $T 0_{J D}$ ) plus the elapsed Julian time ( $\Delta T_{J D}$ ) between the fixed date and the ephemeris time. - Two inputs, where the first input is $T 0_{J D}$ and the second input is $\Delta T_{J D} . \Delta T_{J D}$ |


| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| Second (Optional) | Scalar | must be a positive number. The sum of $T 0_{J D}$ and $\Delta T_{J D}$ must fall between the minimum and maximum Julian date. |
|  |  | The block Epoch parameter controls the number of block inputs. |
|  |  | See the Ephemerides parameter for the minimum and maximum Julian dates. |
|  |  | $\Delta T_{J D}$ - Elapsed Julian time $\left(\Delta T_{J D}\right)$ between the fixed date and the ephemeris time. The sum of $T O_{J D}$ and $\Delta T_{J D}$ must fall between the minimum and maximum Julian date. |
|  |  | See the Ephemerides parameter for the minimum and maximum Julian dates. |
| Output | Dimension Type | Description |
| First | Vector | Barycenter position ( $X_{\text {ICRF1 }}$ ) of the Target object relative to the barycenter of the Center object. Units are km or astronomical units (AU). |
|  |  | Tip This block outputs the barycenter position in Earth-centered inertial (ECI) coordinates. To convert these coordinates to Earth-centered Earth-fixed (ECEF), use the Direction Cosine Matrix ECI to ECEF block. |
| Second (Optional) | Vector | Velocity ( $V_{\text {ICRF }}$ ) of the barycenter of the Target object relative to the barycenter of the Center object. Units are $\mathrm{km} / \mathrm{s}$ or astronomical units (AU)/day. |

## Reference

Folkner, W. M., J. G. Williams, D. H. Boggs, "The Planetary and Lunar Ephemeris DE 421," IPN Progress Report 42-178, 2009.

Ma, C. et al., "The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry," Astronomical Journal, Vol. 116, 516-546, 1998.

Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.

## See Also

Direction Cosine Matrix ECI to ECEF | Earth Nutation | Julian Date Conversion | Moon Libration

## External Web Sites

- http://ssd.jpl.nasa.gov/?planet_eph_export


## Precision Pilot Model

Represent precision pilot model

## Library

Pilot Models

## Description



Precision Pilot Madel

The Precision Pilot Model block represents the pilot model described in Mathematical Models of Human Pilot Behavior. (For more information, see [1]). This pilot model is a single input, single output (SISO) model that represents some aspects of human behavior when controlling aircraft. When modeling human pilot models, use this block for the most accuracy, compared to that provided by the Tustin Pilot Model and Crossover Pilot Model blocks.

This block is an extension of the Crossover Pilot Model block. When calculating the model, this block also takes into account the neuromuscular dynamics of the pilot. This block implements the following equation:

$$
Y_{p}=K_{p} e^{-\tau s}\left(\frac{T_{L} s+1}{T_{I} s+1}\right)\left[\frac{1}{\left(T_{N 1} s+1\right)\left(\frac{s^{2}}{\omega_{N}{ }^{2}}+\frac{2 \zeta_{N}}{\omega_{N}} s+1\right)}\right] .
$$

In this equation:

| Variable | Description |
| :--- | :--- |
| $K_{p}$ | Pilot gain. |


| Variable | Description |
| :--- | :--- |
| $\tau$ | Pilot delay time. |
| $T_{L}$ | Time lead constant for the equalizer term. |
| $T_{I}$ | Time lag constant. |
| $T_{N 1}$ | Time constant for the neuromuscular system. |
| $\omega_{N}$ | Undamped frequency for the neuromuscular system. |
| $\zeta_{\mathrm{N}}$ | Damping ratio for the neuromuscular system. |

A sample value for the natural frequency and the damping ratio of a human is $20 \mathrm{rad} / \mathrm{s}$ and 0.7 , respectively. The term containing the lead-lag term is the equalizer form. This form changes depending on the characteristics of the controlled system. A consistent behavior of the model can occur at different frequency ranges other than the crossover frequency.

This block has non-linear behavior. If you want to linearize the block (for example, with one of the Simulink linmod functions), you might need to change the Pade approximation order. The Precision Pilot Model block implementation incorporates the Simulink Transport Delay block with the Pade order (for linearization) parameter set to 2 by default. To change this value, use the set_param function, for example:

```
set_param(gcb,'pade','3')
```


## Dialog Box

```
I/ Function Block Parameters: Precision Pilot Model
PrecisionPilotModel (mask) (link)
Implement a human pilot model for a single-input, single-output
system, based on the precision model proposed by D. T. McRuer.
Parameters
Type of control: Proportional
Pilot gain:
1
Pilot time delay (s):
0.1
Equalizer lead constant:
1
Equalizer lag constant:
5
Lag constant for neuromuscular system:
0.1
Undamped natural frequency neuromuscular system (rad/s):
20
Damping neuromuscular system:
0.7
```


## Type of control

From the list, select one of the following options to specify the type of aircraft dynamics that you want to control. The equalizer form changes according to these values. For more information, see [2].

| Option (Controlled Element <br> Transfer Function) | Transfer Function of <br> Controlled Element $\left(\boldsymbol{Y}_{\boldsymbol{c}}\right)$ | Transfer Function of Pilot $\left(\boldsymbol{Y}_{\boldsymbol{p}}\right)$ |
| :--- | :---: | :--- |
| Proportional | $K_{c}$ | Lag-lead, $\mathrm{T}_{\mathrm{I}} \gg \mathrm{T}_{\mathrm{L}}$ |
| Rate or velocity | $\frac{K_{c}}{s}$ | 1 |
| Acceleration | $\frac{K_{c}}{s^{2}}$ | Lead-lag, $\mathrm{T}_{\mathrm{L}} \gg \mathrm{T}_{\mathrm{I}}$ |
| Second order | $\frac{K_{c} \omega_{n}{ }^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$ | Lag-lead if $\omega_{\mathrm{m}} \gg 2 / \tau$. |

## Pilot gain

Specifies the pilot gain.

## Pilot time delay (s)

Specifies the total pilot time delay, in seconds. This value typically ranges from 0.1 s to 0.2 s .

## Equalizer lead constant

Specifies the equalizer lead constant.

## Equalizer lag constant

Specifies the equalizer lag constant.

## Lag constant for neuromuscular system

Specifies the neuromuscular system lag constant.
Undamped natural frequency neuromuscular system (rad/s)
Specifies the undamped natural frequency neuromuscular system in $\mathrm{rad} / \mathrm{s}$.

## Damping neuromuscular system

Specifies the damping neuromuscular system.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 1-by-1 | Contains the command for the signal that the pilot <br> model controls. |
| Second | 1-by-1 | Contains the signal that the pilot model controls. |
| Output | Dimension Type | Description |
| First | 1 -by-1 | Contains the command for the aircraft. |

## References

[1] McRuer, D. T., Krendel, E., Mathematical Models of Human Pilot Behavior. Advisory Group on Aerospace Research and Development AGARDograph 180, Jan. 1974.
[2] McRuer, D. T., Graham, D., Krendel, E., and Reisener, W., Human Pilot Dynamics in Compensatory Systems. Air Force Flight Dynamics Lab. AFFDL-65-15. 1965.

See Also<br>Crossover Pilot Model \| Tustin Pilot Model

## Pressure Altitude

Calculate pressure altitude based on ambient pressure

## Library

Environment/Atmosphere


The Pressure Altitude block computes the pressure altitude based on ambient pressure. Pressure altitude is the altitude in the 1976 Committee on the Extension of the Standard Atmosphere (COESA) United States with specified ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.
The Pressure Altitude block icon displays the input and output units selected from the Units list.

## Dialog Box



## Units

Specifies the input units:

| Units | Pstatic | Alt_p |
| :--- | :--- | :--- |
| Metric (MKS) | Pascal | Meters |
| English | Pound force per square inch | Feet |

## Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the static pressure. |
| Output | Dimension Type | Description |
| First |  | Contains the pressure altitude. |

## Assumptions and Limitations

Below the pressure of 0.3961 Pa (approximately 0.00006 psi ) and above the pressure of 101325 Pa (approximately 14.7 psi ), altitude values are extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

## Reference

U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

## See Also

COESA Atmosphere Model

## Pressure Conversion

Convert from pressure units to desired pressure units

## Library

Utilities/Unit Conversions

## Description ${ }^{2 \mathrm{psi}} \rightarrow \mathrm{Pa}$

The Pressure Conversion block computes the conversion factor from specified input pressure units to specified output pressure units and applies the conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

## Dialog Box



## Initial units

Specifies the input units.

## Final units

Specifies the output units.

The following conversion units are available:

| psi | Pound mass per square inch |
| :--- | :--- |
| Pa | Pascals |
| psf | Pound mass per square foot |
| atm | Atmospheres |

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the pressure in initial pressure units. |  |
| Output | Dimension Type | Description |
| First |  | Contains the pressure in final pressure units. |

## See Also

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Temperature Conversion
Velocity Conversion

## Quaternion Conjugate

Calculate conjugate of quaternion

## Library

Utilities/Math Operations


The Quaternion Conjugate block calculates the conjugate for a given quaternion.
The quaternion has the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3} .
$$

The quaternion conjugate has the form of

$$
q^{\prime}=q_{0}-\mathbf{i} q_{1}-\mathbf{j} q_{2}-\mathbf{k} q_{3} .
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, r_{0}, \ldots\right.$, <br> $\left.q_{1}, r_{1}, \ldots, q_{2}, r_{2}, \ldots, q_{3}, r_{3}, \ldots\right]$. |
|  |  | Description |
| Output | Dimension Type | Quaternion conjugate or <br> vector |
| First | Contains quaternion conjugates in the form of <br> $\left[q_{0}^{\prime}, r_{0}^{\prime}, \ldots, q_{1}^{\prime}, r_{1}^{\prime}, \ldots, q_{2}^{\prime}, r_{2}^{\prime}, \ldots, q_{3}^{\prime}, r_{3}^{\prime}, \ldots\right]$. |  |
|  |  |  |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Division
Quaternion Inverse
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize
Quaternion Rotation

## Quaternion Division

Divide quaternion by another quaternion

## Library

Utilities/Math Operations

## Description $\sqrt{19} \quad$ 中1

The Quaternion Division block divides a given quaternion by another.
The quaternions have the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}
$$

and

$$
r=r_{0}+\mathbf{i} r_{1}+\mathbf{j} r_{2}+\mathbf{k} r_{3} .
$$

The resulting quaternion from the division has the form of

$$
t=\frac{q}{r}=t_{0}+\mathbf{i} t_{1}+\mathbf{j} t_{2}+\mathbf{k} t_{3},
$$

where

$$
\begin{aligned}
& t_{0}=\frac{\left(r_{0} q_{0}+r_{1} q_{1}+r_{2} q_{2}+r_{3} q_{3}\right)}{r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}} \\
& t_{1}=\frac{\left(r_{0} q_{1}-r_{1} q_{0}-r_{2} q_{3}+r_{3} q_{2}\right)}{r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}} \\
& t_{2}=\frac{\left(r_{0} q_{2}+r_{1} q_{3}-r_{2} q_{0}-r_{3} q_{1}\right)}{r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}} \\
& t_{3}=\frac{\left(r_{0} q_{3}-r_{1} q_{2}+r_{2} q_{1}-r_{3} q_{0}\right)}{r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}}
\end{aligned}
$$

## Dialog Box

```
Function Block Parameters: Quaternion Division
```



Quaternion Division (mask) (link)
Divide a quaternion by another quaternion.


## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, p_{0}, \ldots\right.$, |
| Second | Quaternion or vector | $\left.q_{1}, p_{1}, \ldots, q_{2}, p_{2}, \ldots, q_{3}, p_{3}, \ldots\right]$. <br> Contains quaternions in the form of $\left[s_{0}, r_{0}, \ldots, s_{1}\right.$, <br> $\left.r_{1}, \ldots, s_{2}, r_{2}, \ldots, s_{3}, r_{3}, \ldots\right]$. |
| Output | Dimension Type | Description |
| First | Quaternion or vector | Contains resulting quaternion or vector of <br> resulting quaternions from division. |

The output is the resulting quaternion from the division or vector of resulting quaternions from division.

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Inverse

## Quaternion Modulus

Quaternion Multiplication
Quaternion Norm
Quaternion Normalize
Quaternion Rotation

## Quaternion Inverse

## Calculate inverse of quaternion

## Library

Utilities/Math Operations


The Quaternion Inverse block calculates the inverse for a given quaternion.
The quaternion has the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3} .
$$

The quaternion inverse has the form of

$$
q^{-1}=\frac{q_{0}-\mathbf{i} q_{1}-\mathbf{j} q_{2}-\mathbf{k} q_{3}}{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, r_{0}, \ldots\right.$, <br> $\left.q_{1}, r_{1}, \ldots, q_{2}, r_{2}, \ldots, q_{3}, r_{3}, \ldots\right]$. |
| Output | Dimension Type | Description |
| First | Quaternion inverse or <br> vector | Contains quaternion inverse or vector of <br> quaternion inverses. |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Division
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize
Quaternion Rotation

## Quaternion Modulus

Calculate modulus of quaternion

## Library

Utilities/Math Operations


The Quaternion Modulus block calculates the magnitude for a given quaternion.
The quaternion has the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}
$$

The quaternion modulus has the form of

$$
|q|=\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, r_{0}, \ldots\right.$, <br> $\left.q_{1}, r_{1}, \ldots, q_{2}, r_{2}, \ldots, q_{3}, r_{3}, \ldots\right]$. |
| Output | Dimension Type | Description |
| First | Quaternion modulus or <br> vector | Contains quaternion modulus or vector of <br> quaternion modulus in the form of $[\|q\|$, <br> $\|r\|, \ldots]$. |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Division
Quaternion Inverse
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize
Quaternion Rotation

## Quaternion Multiplication

Calculate product of two quaternions

## Library

Utilities/Math Operations

\section*{Description | $\sqrt[9]{9}$ | 91 |
| :---: | :---: |}

The Quaternion Multiplication block calculates the product for two given quaternions.
The quaternions have the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}
$$

and

$$
r=r_{0}+\mathbf{i} r_{1}+\mathbf{j} r_{2}+\mathbf{k} r_{3} .
$$

The quaternion product has the form of

$$
t=q \times r=t_{0}+\mathbf{i} t_{1}+\mathbf{j} t_{2}+\mathbf{k} t_{3},
$$

where

$$
\begin{aligned}
& t_{0}=\left(r_{0} q_{0}-r_{1} q_{1}-r_{2} q_{2}-r_{3} q_{3}\right) \\
& t_{1}=\left(r_{0} q_{1}+r_{1} q_{0}-r_{2} q_{3}+r_{3} q_{2}\right) \\
& t_{2}=\left(r_{0} q_{2}+r_{1} q_{3}+r_{2} q_{0}-r_{3} q_{1}\right) \\
& t_{3}=\left(r_{0} q_{3}-r_{1} q_{2}+r_{2} q_{1}+r_{3} q_{0}\right)
\end{aligned}
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, p_{0}, \ldots\right.$, <br> $\left.q_{1}, p_{1}, \ldots, q_{2}, p_{2}, \ldots, q_{3}, p_{3}, \ldots\right]$. |
| Second | Quaternion or vector | Contains quaternions in the form of $\left[s_{0}, r_{0}, \ldots, s_{1}\right.$, <br> $\left.r_{1}, \ldots, s_{2}, r_{2}, \ldots, s_{3}, r_{3}, \ldots\right]$. |
| Output | Dimension Type | Description |
| First | Quaternion product or <br> vector | Contains quaternion product or vector of <br> quaternion products. |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Division
Quaternion Inverse

Quaternion Modulus
Quaternion Norm
Quaternion Normalize
Quaternion Rotation

## Quaternion Norm

Calculate norm of quaternion

## Library

Utilities/Math Operations


The Quaternion Norm block calculates the norm for a given quaternion.
The quaternion has the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3} .
$$

The quaternion norm has the form of

$$
\operatorname{norm}(q)=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, r_{0}, \ldots\right.$, <br> $\left.q_{1}, r_{1}, \ldots, q_{2}, r_{2}, \ldots, q_{3}, r_{3}, \ldots\right]$. |
| Output | Dimension Type | Description |
| First | Quaternion norm or <br> vector | Contains quaternion norm or vector of <br> quaternion norms in the form of $[$ norm $(q)$, <br> norm $(\mathrm{r}), \ldots]$. |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Division
Quaternion Inverse
Quaternion Modulus
Quaternion Multiplication
Quaternion Normalize
Quaternion Rotation

## Quaternion Normalize

Normalize quaternion

## Library

Utilities/Math Operations


The Quaternion Normalize block calculates a normalized quaternion for a given quaternion.

The quaternion has the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3} .
$$

The normalized quaternion has the form of

$$
\operatorname{normal}(q)=\frac{q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3}}{\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}} .
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Quaternion or vector | Contains quaternions in the form of $\left[q_{0}, r_{0}, \ldots\right.$, <br> $\left.q_{1}, r_{1}, \ldots, q_{2}, r_{2}, \ldots, q_{3}, r_{3}, \ldots\right]$. |
| Output | Dimension Type | Description |
| First | Normalized quaternion <br> or vector | Contains normalized quaternion or vector of <br> normalized quaternions. |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Division
Quaternion Inverse
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Rotation

## Quaternion Rotation

Rotate vector by quaternion

## Library

Utilities/Math Operations

## Description $\sqrt{\sqrt{9} \text { veec.cot }}$

The Quaternion Rotation block rotates a vector by a quaternion.
The quaternion has the form of

$$
q=q_{0}+\mathbf{i} q_{1}+\mathbf{j} q_{2}+\mathbf{k} q_{3} .
$$

The vector has the form of

$$
v=\mathbf{i} v_{1}+\mathbf{j} v_{2}+\mathbf{k} v_{3} .
$$

The rotated vector has the form of

$$
v^{\prime}=\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
v_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
\left(1-2 q_{2}^{2}-2 q_{3}^{2}\right) & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & 2\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}-q_{0} q_{3}\right) & \left(1-2 q_{1}^{2}-2 q_{3}^{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}+q_{0} q_{2}\right) & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) & \left(1-2 q_{1}^{2}-2 q_{2}^{2}\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

## Dialog Box

```
-1 Function Block Parameters: Quaternion Rotation
 Quaternion Rotation (mask) (link)
 Rotate a vector by a quaternion.
 OK
 Cancel
 Help
 Apply
```


## Inputs and Outputs

\(\left.$$
\begin{array}{lll}\text { Input } & \text { Dimension Type } & \text { Description } \\
\text { First } & \text { Quaternion or vector } & \begin{array}{l}\text { Contains quaternions in the form of }\left[q_{0}, r_{0}, \ldots,\right. \\
\left.q_{1}, r_{1}, \ldots, q_{2}, r_{2}, \ldots, q_{3}, r_{3}, \ldots\right] .\end{array} \\
\text { Second } & \text { Vector } & \begin{array}{l}\text { Contains vector or vector of vectors in the form } \\
\text { of }\left[v_{1}, u_{1}, \ldots, v_{2}, u_{2}, \ldots, v_{3}, u_{3}, \ldots\right] .\end{array}
$$ <br>

Output \& $$
\begin{array}{l}\text { Dimension Type }\end{array}
$$ \& Description\end{array}\right]\)| Rotated quaternion or |
| :--- |
| vector |$\quad$| Contains rotated vector or vector of rotated |
| :--- |
| vectors. |

## References

Stevens, Brian L., Frank L. Lewis, Aircraft Control and Simulation, Wiley-Interscience, 2nd Edition.

## See Also

Quaternion Conjugate
Quaternion Division
Quaternion Inverse

Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize

## Quaternions to Direction Cosine Matrix

Convert quaternion vector to direction cosine matrix

## Library

Utilities/Axes Transformations


The Quaternions to Direction Cosine Matrix block transforms the four-element unit quaternion vector ( $q_{0}, q_{1}, q_{2}, q_{3}$ ) into a 3 -by- 3 direction cosine matrix (DCM). The outputted DCM performs the coordinate transformation of a vector in inertial axes to a vector in body axes.

Using quaternion algebra, if a point $P$ is subject to the rotation described by a quaternion $q$, it changes to $P^{\prime}$ given by the following relationship:

$$
\begin{aligned}
& P^{\prime}=q P q^{c} \\
& q=q_{0}+\boldsymbol{i} q_{1}+\boldsymbol{j} q_{2}+\boldsymbol{k} q_{3} \\
& q^{c}=q_{0}-\boldsymbol{i} q_{1}-\boldsymbol{j} q_{2}-\boldsymbol{k} q_{3} \\
& P=0+\boldsymbol{i} x+\boldsymbol{j} y+\boldsymbol{k} z
\end{aligned}
$$

Expanding $P^{\prime}$ and collecting terms in $x, y$, and $z$ gives the following for $P^{\prime}$ in terms of $P$ in the vector quaternion format:

$$
P^{\prime}=\left[\begin{array}{c}
0 \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\left(q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) x+2\left(q_{1} q_{2}-q_{0} q_{3}\right) y+2\left(q_{1} q_{3}+q_{0} q_{2}\right) z \\
2\left(q_{0} q_{3}+q_{1} q_{2}\right) x+\left(q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}\right) y+2\left(q_{2} q_{3}-q_{0} q_{1}\right) z \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) x+2\left(q_{0} q_{1}+q_{2} q_{3}\right) y+\left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\right) z
\end{array}\right]
$$

Since individual terms in $P^{\prime}$ are linear combinations of terms in $x, y$, and $z$, a matrix relationship to rotate the vector $(x, y, z)$ to $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ can be extracted from the preceding. This matrix rotates a vector in inertial axes, and hence is transposed to generate the DCM that performs the coordinate transformation of a vector in inertial axes into body axes.

$$
D C M=\left[\begin{array}{lll}
\left(q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & 2\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}-q_{0} q_{3}\right) & \left(q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}+q_{0} q_{2}\right) & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) & \left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\right)
\end{array}\right]
$$

## Dialog Box



## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 4-by-1 quaternion vector | Contains the quaternion vector. |
| Output | Dimension Type | Description |
| First | 3-by-3 direction cosine <br> matrix. | Contains the direction cosine matrix. |

## See Also

Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Quaternions
Rotation Angles to Direction Cosine Matrix
Rotation Angles to Quaternions

## Quaternions to Rotation Angles

Determine rotation vector from quaternion

## Library

Utilities/Axes Transformations


The Quaternions to Rotation Angles block converts the four-element quaternion vector $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$ into the rotation described by the three rotation angles ( $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ ). The block generates the conversion by comparing elements in the direction cosine matrix (DCM) as a function of the rotation angles. The elements in the DCM are functions of a unit quaternion vector. For example, for the rotation order $z-y-x$, the DCM is defined as:

$$
D C M=\left[\begin{array}{lll}
\cos \theta \cos \psi & \cos \theta \sin \psi & -\sin \theta \\
(\sin \phi \sin \theta \cos \psi-\cos \phi \sin \psi) & (\sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi) & \sin \phi \cos \theta \\
(\cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi) & (\cos \phi \sin \theta \sin \psi-\sin \phi \cos \psi) & \cos \phi \cos \theta
\end{array}\right]
$$

The DCM defined by a unit quaternion vector is:

$$
D C M=\left[\begin{array}{lll}
\left(q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & 2\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}-q_{0} q_{3}\right) & \left(q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}+q_{0} q_{2}\right) & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) & \left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\right)
\end{array}\right]
$$

From the preceding equation, you can derive the following relationships between DCM elements and individual rotation angles for a ZYX rotation order:

$$
\begin{aligned}
\phi & =\operatorname{atan}(D C M(2,3), D C M(3,3)) \\
& =\operatorname{atan}\left(2\left(q_{2} q_{3}+q_{0} q_{1}\right),\left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\right)\right) \\
\theta & =\operatorname{asin}(-D C M(1,3)) \\
& =\operatorname{asin}\left(-2\left(q_{1} q_{3}-q_{0} q_{2}\right)\right) \\
\psi & =\operatorname{atan}(D C M(1,2), D C M(1,1)) \\
& =\operatorname{atan}\left(2\left(q_{1} q_{2}+q_{0} q_{3}\right),\left(q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right)\right)
\end{aligned}
$$

where $\Psi$ is $R 1, \Theta$ is $R 2$, and $\Phi$ is $R 3$.

## Dialog Box

## Function Block Parameters: Quaternions to Rotation Angles

Quat2Ang (mask) (link)
Determine rotation vector ( $R 1, R 2, R 3$ ) from quaternion ( $q 0, q 1, q 2, q 3$ ).
The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that lies between $+/-90$ degrees, and R1 and R3 angles that lie between $+/-180$ degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between +/- 180 degrees.

## Parameters

Rotation Order: ZYX

OK Cancel Help Apply

## Rotation Order

Specifies the output rotation order for three rotation angles. From the list, select ZYX, $Z Y Z, Z X Y, Z X Z, Y X Z, Y X Y, ~ Y Z X, ~ Y Z Y, ~ X Y Z, ~ X Y X, ~ X Z Y, ~ o r ~ X Z X . ~ T h e ~ d e f a u l t ~ i s ~ Z Y X . ~$

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 4-by-1 quaternion vector | Contains the quaternion vector. |
| Output | Dimension Type | Description |
| First | 3-by-3 vector | Contains the rotation angles, in radians. |

## Assumptions and Limitations

The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that is between $\pm 90$ degrees, and R1 and R3 angles that are between $\pm 180$ degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an $R 2$ angle that is between 0 and 180 degrees, and R1 and R3 angles that are between $\pm 180$ degrees.

## See Also

Direction Cosine Matrix to Rotation Angles
Direction Cosine Matrix to Quaternions
Quaternions to Direction Cosine Matrix
Rotation Angles to Direction Cosine Matrix
Rotation Angles to Quaternions

## Radius at Geocentric Latitude

Estimate radius of ellipsoid planet at geocentric latitude

## Library

Flight Parameters

## Description



The Radius at Geocentric Latitude block estimates the radius ( $r_{s}$ ) of an ellipsoid planet at a particular geocentric latitude $\left(\lambda_{s}\right)$.


The following equation estimates the ellipsoid radius $\left(r_{s}\right)$ using flattening $(\bar{f})$, geocentric latitude $\left(\bar{\lambda}_{s}\right)$, and equatorial radius $(\bar{R})$.

$$
r_{s}=\sqrt{\frac{R^{2}}{1+\left[1 /(1-f)^{2}-1\right] \sin ^{2} \lambda_{s}}}
$$

## Dialog Box



```
台 Function Block Parameters: Radius at Geocentric Latitude
Radius at Geocentric Latitude (mask) (link)
Estimate radius of ellipsoid planet at geocentric latitude.
```


## Parameters

```
Planet model: Custom
Flattening:
1/298.257223563
Equatorial radius of planet:
6378137
```


## Units

Specifies the parameter and output units:

| Units | Equatorial Radius | Radius at Geocentric Latitude |
| :--- | :--- | :--- |
| Metric (MKS) | Meters | Meters |
| English | Feet | Feet |

This option is only available when Planet model is set to Earth (WGS84).

## Planet model

Specifies the planet model to use:
Custom
Earth (WGS84)

## Flattening

Specifies the flattening of the planet. This option is only available with Planet model set to Custom.

## Equatorial radius of planet

Specifies the radius of the planet at its equator. This option is only available with Planet model set to Custom.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the geocentric latitude, in degrees. |  |
| Output | Dimension Type | Description |
| First |  | Contains the radius of planet at geocentric <br> latitude, in the same as the units as flattening. |

## References

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA Education Series, Reston, Virginia, 2000.

## See Also

ECEF Position to LLA

Direction Cosine Matrix ECEF to NED<br>Direction Cosine Matrix ECEF to NED to Latitude and Longitude<br>Geocentric to Geodetic Latitude<br>Geodetic to Geocentric Latitude<br>LLA to ECEF Position

# Receive net_ctrl Packet from FlightGear 

Receive net_ctrl packet from FlightGear

## Library

Animation/Flight Simulator Interfaces


The Receive net_ctrl Packet from FlightGear block receives a network control and environment data packet, net_ctrl, from the simulation of a Simulink model in the FlightGear simulator, or from a FlightGear session. This data packet is compatible with a particular version of FlightGear flight simulator. All the signals supported by the FlightGear net_ctrl data packet are supported by this block. The signals are arranged into multiple groups. Any group can be turned on or off. Zeros are inserted for packet values that are part of inactive signal groups.

In Rapid Accelerator mode, if you run a model that contains this block, the block produces zeroes (0s). It does not produce deployable code. In Accelerator mode, the block works as expected.

For details on signals and signal groups, see "Inputs and Outputs" on page 4-455.

## Determining the Source IP Address

To determine the source IP address, you can use one of several techniques, such as:

- Use 127.0.0.1 for the local computer (localhost).
- Ping another computer from a Windows cmd. exe (or Linux shell) prompt:

C: \> ping andyspc

```
Pinging andyspc [144.213.175.92] with 32 bytes of data:
Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Ping statistics for 144.213.175.92:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 20ms, Maximum = 30ms, Average = 22ms
```

- On a Windows machine, type ipconfig and use the returned IP address:

H: \>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:


## Dialog Box

| 2i. Source Block Parameters: Receive net_ctrl Packet from FlightGear |
| :--- |
| FlightGearReceiveNetCtrl (mask) (link) |
| Receive a network control and environmental (net_ctrl) packet from |
| FlightGear Flight Simulator via UDP from the specified IP Address and |
| UDP port. |
| Parameters |
| FlightGear version: v3.0 |
| Origin IP address: |
| 127.0.0.1 <br> Origin port: <br> 5505 <br> Sample time ( -1 for inherited): <br> 1/30 <br> OK Cancel Help |
| Apply |

## FlightGear version

Select your FlightGear software version: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10, v1.0, v1.9.1, v2.0, v2.4, v2.6, v2.8, v2.10, v2.12, v3.0.

Note: If you are using a FlightGear version older than 2.0, the model displays a notification from the Simulink Upgrade Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more information, see "Supported FlightGear Versions".

## Origin IP address

Enter a valid IP address as a dot-decimal string. This IP address must be the address of the PC from which FlightGear is run.

For example, 10.10.10.3. You can also use a MATLAB expression that returns a valid IP address as a string. If FlightGear is run on the local PC, leave the default value of 127.0.0.1 (localhost).

## Origin port

UDP port that the block accepts data from. The sender sends data to the port specified in this parameter. This value must match the Origin port parameter of the Generate Run Script block. It must be a unique port number that no other application on the PC uses. The site, http://en.wikipedia.org/wiki/ List_of_TCP_and_UDP_port_numbers, lists commonly known UDP port numbers. To identify UDP port numbers already in use on your PC, type:

```
netstat -a -p UDP
```


## Sample time

Specify the sample time ( -1 for inherited).

## Inputs and Outputs

| Output | Dimension Type |  | Description |
| :--- | :--- | :--- | :--- |
| First | Platform | Type | Contains the controls information from <br> Windows and <br> Linux |
|  | 744 -by-1 vector (for <br> FlightGear v3.0, v2.12, <br> v2.10, v2.8, v2.6, v2.4, <br> v2.0, v1.9, v1.0, v0.9.10) |  |  |
|  |  | FlightGear in uint8 format. |  |


| Output $\quad$ Dimension Type |  | Description |
| :---: | :--- | :--- |
|  | 732-by-1 vector (for <br> FlightGear v2.0, v2.4, <br> v1.9, v1.0, v0.9.10) |  |
|  | 524 -by-1 vector (for |  |
|  | FlightGear v0.9.9) |  |
|  | 504-by-1 vector (for |  |
|  | FlightGear v0.9.8) |  |
|  | 400-by-1 vector (for |  |
|  | FlightGear v0.9.3) |  |

* On a Macintosh system with FlightGear 2.6, 2.8, 2.10, 2.12, and 3.0 you might see unexpected results (for example, very large or very small data values). For more information, see "Macintosh Platform and FlightGear Version 2.6 or Later" on page 2-46.


## Examples

See the asbhl20 example.

## See Also

FlightGear Preconfigured 6DoF Animation
Generate Run Script
Send net_fdm Packet to FlightGear
Unpack net_ctrl Packet from FlightGear

## Relative Ratio

Calculate relative atmospheric ratios

## Library

Flight Parameters


The Relative Ratio block computes the relative atmospheric ratios, including relative temperature ratio $(\theta), \sqrt{\theta}$, relative pressure ratio $(\delta)$, and relative density ratio $(\sigma)$.
$\theta$ represents the ratio of the air stream temperature at a chosen reference station relative to sea level standard atmospheric conditions.

$$
\theta=\frac{T}{T_{0}}
$$

$\delta$ represents the ratio of the air stream pressure at a chosen reference station relative to sea level standard atmospheric conditions.

$$
\delta=\frac{P}{P_{0}}
$$

$\sigma$ represents the ratio of the air stream density at a chosen reference station relative to sea level standard atmospheric conditions.

$$
\sigma=\frac{\rho}{\rho_{0}}
$$

The Relative Ratio block icon displays the input units selected from the Units list.

## Dialog Box

```
固 Function Block Parameters: Relative Ratio
Relative Ratio (mask) (link)
Calculate the relative atmospheric ratios including relative temperature
ratio (theta), square root of theta, relative pressure ratio (delta), and
relative density ratio (sigma).
Theta represents the ratio of the air stream temperature at a chosen reference station relative to sea level standard atmospheric conditions.
Delta represents the ratio of the air stream pressure at a chosen reference station relative to sea level standard atmospheric conditions.
Sigma represents the ratio of the air stream density at a chosen reference station relative to sea level standard atmospheric conditions.
Parameters
Units: Metric (MKS)
V Theta:
\(\checkmark\) Square root of theta:
V Delta:
V Sigma:
\begin{tabular}{|c|c|c|c|c|c|}
\hline OK & Help & Apply \\
\hline
\end{tabular}
```


## Units

Specifies the input units:

| Units | Tstatic | Pstatic | rho_static |
| :--- | :--- | :--- | :--- |
| Metric (MKS) | Kelvin | Pascal | Kilograms per cubic <br> meter |
| English | Degrees Rankine | Pound force per <br> square inch | Slug per cubic foot |

## Theta

When selected, the $\theta$ is calculated and static temperature is a required input.

## Square root of theta

When selected, the $\sqrt{\theta}$ is calculated and static temperature is a required input.

## Delta

When selected, the $\delta$ is calculated and static pressure is a required input.

## Sigma

When selected, the $\sigma$ is calculated and static density is a required input.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the Mach number. |  |
| Second | Contains the ratio between the specific heat at <br> constant pressure $\left(C_{p}\right)$ and the specific heat at <br> constant volume $\left(C_{v}\right)$. For example, $\left(\gamma=C_{p} / C_{v}\right)$. |  |
| Third | Contains the static temperature. <br> Fourth <br> Fifth | Contains the static pressure. <br> Contains the static density. |
| Output | Dimension Type | Description |
| First | Contains the $\theta$. |  |
| Second | Contains the $\sqrt{\theta}$. <br> Third | Contains the $\delta$. |
| Fourth | Contains the $\sigma$. |  |

## Assumptions

For cases in which total temperature, total pressure, or total density ratio is desired (Mach number is nonzero), the total temperature, total pressure, and total densities are calculated assuming perfect gas (with constant molecular weight, constant pressure specific heat, and constant specific heat ratio) and dry air.

## Reference

Aeronautical Vestpocket Handbook, United Technologies Pratt \& Whitney, August, 1986.

## Rotation Angles to Direction Cosine Matrix

Convert rotation angles to direction cosine matrix

## Library

Utilities/Axes Transformations


The Rotation Angles to Direction Cosine Matrix block determines the direction cosine matrix (DCM) from a given set of rotation angles, R1, R2, and R3, respectively the first, second, and third rotation angles. The output is a 3 -by- 3 DCM that performs coordinate transformations based on rotation angles.

## Dialog Box

Function Block Parameters: Rotation Angles to Direction Cosine Ma... $x^{x}$

Ang2DCM (mask) (link)
Determine the 3-by-3 direction cosine matrix (DCM) from a given set of rotation angles.

Parameters
Rotation Order: ZYX

OK
Cancel
Help
Apply

## Rotation Order

Specifies the input rotation order for three rotation angles. From the list, select ZYX, $Z Y Z, Z X Y, Z X Z, Y X Z, Y X Y, ~ Y Z X, ~ Y Z Y, ~ X Y Z, ~ X Y X, ~ X Z Y, ~ o r ~ X Z X . ~ T h e ~ d e f a u l t ~ i s ~ Z Y X . ~$

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 3-by-1 vector | Contains the rotation angles, in radians. |
| Output | Dimension Type | Description |
| First | 3-by-3 matrix | Contains the direction cosine matrix. |

## See Also

Direction Cosine Matrix to Quaternions
Direction Cosine Matrix to Rotation Angles
Quaternions to Direction Cosine Matrix

## Rotation Angles to Quaternions

Calculate quaternion from rotation angles

## Library

Utilities/Axes Transformations


The Rotation Angles to Quaternions block converts the rotation described by the three rotation angles (R1, R2, R3) into the four-element quaternion vector ( $q_{0}, q_{1}, q_{2}, q_{3}$ ). A quaternion vector represents a rotation about a unit vector $\left(\mu_{x}, \mu_{y}, \mu_{z}\right)$ through an angle $\theta$. A unit quaternion itself has unit magnitude, and can be written in the following vector format.

$$
q=\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) \mu_{x} \\
\sin (\theta / 2) \mu_{y} \\
\sin (\theta / 2) \mu_{z}
\end{array}\right]
$$

An alternative representation of a quaternion is as a complex number,

$$
q=q_{0}+\boldsymbol{i} q_{1}+\boldsymbol{j} q_{2}+\boldsymbol{k} q_{3}
$$

where, for the purposes of multiplication,

$$
\begin{aligned}
& \boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=-1 \\
& \boldsymbol{i} \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=\boldsymbol{k} \\
& \boldsymbol{j} \boldsymbol{k}=-\boldsymbol{k} \boldsymbol{j}=\boldsymbol{i} \\
& \boldsymbol{k} \boldsymbol{i}=-\boldsymbol{i} \boldsymbol{k}=\boldsymbol{j}
\end{aligned}
$$

The benefit of representing the quaternion in this way is the ease with which the quaternion product can represent the resulting transformation after two or more rotations.

## Dialog Box

Function Block Parameters: Rotation Angles to Quaternions
Ang2Quat (mask) (link)
Calculate quaternion ( $q 0, q 1, q 2, q 3$ ) from rotation angles ( $R 1, R 2, R 3$ ).
Parameters
Rotation Order: $Z Y X \quad$ -

OK
Cancel
Help
Apply

## Rotation Order

Specifies the output rotation order for three wind rotation angles. From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, or XZX. The default is ZYX.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 3 -by-1 vector | Contains the rotation angles, in radians. |
| Output | Dimension Type | Description |
| First | 4 -by- 1 matrix | Contains the quaternion vector. |

## Assumptions and Limitations

The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that is between $\pm 90$ degrees, and R1 and R3 angles that are between $\pm 180$ degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R 2 angle that is between 0 and 180 degrees, and R1 and R3 angles that are between $\pm 180$ degrees.

## See Also

Direction Cosine Matrix to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Rotation Angles
Rotation Angles to Direction Cosine Matrix

## Self-Conditioned [A,B,C,D]

Implement state-space controller in self-conditioned form

## Library

GNC/Controls

## 

The Self-Conditioned [A,B,C,D] block can be used to implement the state-space controller defined by

$$
\left[\begin{array}{l}
\dot{x}=A x+B e \\
u=C x+D e
\end{array}\right]
$$

in the self-conditioned form

$$
\begin{aligned}
& \dot{z}=(A-H C) z+(B-H D) e+H u_{\text {meas }} \\
& u_{\text {dem }}=C z+D e
\end{aligned}
$$

The input $u_{\text {meas }}$ is a vector of the achieved actuator positions, and the output $u_{d e m}$ is the vector of controller actuator demands. In the case that the actuators are not limited, then $u_{\text {meas }}=u_{d e m}$ and substituting the output equation into the state equation returns the nominal controller. In the case that they are not equal, the dynamics of the controller are set by the poles of $A-H C$.

Hence $H$ must be chosen to make the poles sufficiently fast to track $u_{\text {meas }}$ but at the same time not so fast that noise on e is propagated to $u_{d e m}$. The matrix $H$ is designed by a callback to the Control System Toolbox command place to place the poles at defined locations.

## Dialog Box

| Function Block Parameters: Self-Conditioned [ $A, B, C, D$ ] | $x^{-x}$ |
| :---: | :---: |
| Self-Conditioned (mask) (link) |  |
| Implement a state-space controller $[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]$ in a self-conditioned form. If $u \_$meas $=u \_d e m$, then the implemented controller is [ $A, B, C, D]$. If u_meas is limited, e.g., rate limiting, then the poles of the controller become those defined in the mask dialog box. Uses call to Control Systems Toolbox function place.m when initializing. |  |
| Parameters |  |
| A-matrix: |  |
| [-1-0.2;0-3] |  |
| B-matrix: |  |
| [1;1] |  |
| C-matrix: |  |
| [10] |  |
| D-matrix: |  |
| 0.02 |  |
| Initial state, x_initial: |  |
| 0 |  |
| Poles of A-H*C $=\left[\begin{array}{lll}w 1 & \ldots & w n\end{array}\right]$ : |  |
| [-5 -2] |  |
| OK Cancel Help | Apply |

## A-matrix

A-matrix of the state-space implementation.

## B-matrix

B-matrix of the state-space implementation.

## C-matrix

C-matrix of the state-space implementation.

## D-matrix

D-matrix of the state-space implementation.

## Initial state, $x$ _initial

This is a vector of initial states for the controller, i.e., initial values for the state vector, $z$. It should have length equal to the size of the first dimension of $A$.

## Poles of A-H*C

This is a vector of the desired poles of $A-H^{*} C$. Hence the number of pole locations defined should be equal to the dimension of the $A$-matrix.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First |  | Contains the control error. |
| Second |  | Contains the measured actuator position. |
| Output | Dimension Type | Description |
| First |  | Contains the actuator demands. |

## Assumptions and Limitations

Note: This block requires the Control System Toolbox product.

## Examples

This Simulink model shows a state-space controller implemented in both self-conditioned and standard state-space forms. The actuator authority limits of $\pm 0.5$ units are modeled by the saturation block.

Self-Conditioned Controller Comparison


Notice that the $A$-matrix has a zero in the 1,1 element, indicating integral action.


The top trace shows the conventional state-space implementation. The output of the controller winds up well past the actuator upper authority limit of +0.5 . The lower trace shows that the self-conditioned form results in an actuator demand that tracks the upper authority limit, which means that when the sign of the control error, e, is reversed, the actuator demand responds immediately.

## Reference

The algorithm used to determine the matrix H is defined in Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback," International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

## See Also

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

## Send net_fdm Packet to FlightGear

Transmit net_fdm packet to destination IP address and port for FlightGear session

## Library

Animation/Flight Simulator Interfaces


The Send net_fdm Packet to FlightGear block transmits the net_fdm packet to FlightGear on the current computer, or a remote computer on the network. The packet is constructed using the Pack net_fdm Packet for FlightGear block. The destination port should be an unused port that you can use when you launch FlightGear with the FlightGear command line flag:
--fdm=network, localhost,5501,5502,5503
The second port in the list, 5502, is the network flight dynamics model (fdm) port.
This block does not produce deployable code.

## Determining the Destination IP Address

You can use one of several techniques to determine the destination IP address, such as:

- Use 127.0.0.1 for "this" computer
- Ping another computer from a Windows cmd . exe (or UNIX shell) prompt:

```
C:\> ping andyspc
Pinging andyspc [144.213.175.92] with 32 bytes of data:
Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
```

```
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Ping statistics for 144.213.175.92:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 20ms, Maximum = 30ms, Average = 22ms
```

- On a Windows machine, type ipconfig and use the returned IP Address:

H: \>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix . :
IP Address. . . . . . . . . . . . : 192.168.42.178
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 192.168.42.254

## Dialog Box

Fink Block Parameters: Send net_fdm Packet to FlightGear
FlightGearSendNetFdm (mask) (link)
Transmit a network flight dynamics model (net_fdm) packet to
FlightGear Flight Simulator via UDP at the specified IP Address and
UDP port.
Parameters
Destination IP address:
127.0.0.1
Destination port:
Sample time ( -1 for inherited):
1/30

## Destination IP address

Specify your destination IP address.

## Destination port

Specify your destination port.

## Sample time

Specify the sample time ( -1 for inherited).

## Inputs and Outputs

The input signal is the FlightGear net_fdm data packet.

## Examples

See the asbhl20 for an example of this block.

## See Also

FlightGear Preconfigured 6DoF Animation
Generate Run Script
Pack net_fdm Packet for FlightGear
Receive net_ctrl Packet from FlightGear

## Simple Variable Mass 3DOF (Body Axes)

Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to body axes

## Library

Equations of Motion/3DOF


The Simple Variable Mass 3DOF (Body Axes) block considers the rotation in the vertical plane of a body-fixed coordinate frame about a flat Earth reference frame.


The equations of motion are

$$
\begin{aligned}
& \dot{u}=\frac{F_{x}}{m}-\frac{\dot{m} U r e_{b}}{m}-q w-g \sin \theta \\
& \text { Vre }_{b}=[U r e \quad W r e]_{b} \\
& \dot{w}=\frac{F_{z}}{m}-\frac{\dot{m} W r e_{b}}{m}+q u+g \cos \theta \\
& \dot{q}=\frac{M-\dot{I}_{y y} q}{I_{y y}} \\
& \dot{\theta}=q \\
& \dot{I}_{y y}=\frac{I_{y y f u l l}-I_{\text {yyempty }}}{m_{\text {full }}-m_{\text {empty }}} \dot{m}
\end{aligned}
$$

where the applied forces are assumed to act at the center of gravity of the body. $U r e_{\mathrm{b}}$ and $W r e_{\mathrm{b}}$ are the relative velocities of the mass flow ( $\dot{m}$ ) being added to or ejected from the body in body-fixed axes.

## Dialog Box



## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metric (MKS) | Newton | Newton meter | Meters per second squared | Meters per second | Meters | Kilogram | Kilogram meter squared |
| English (Velocity in ft/s) | Pound | Foot pound | Feet per second squared | Feet per second | Feet | Slug | Slug foot squared |
| English (Velocity in kts) | Pound | Foot pound | Feet per second squared | Knots | Feet | Slug | Slug foot squared |

Mass Type
Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation. |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable. |

The Simple Variable selection conforms to the previously described equations of motion.

## Initial velocity

A scalar value for the initial velocity of the body, $\left(V_{0}\right)$.

## Initial body attitude

A scalar value for the initial pitch attitude of the body, $\left(\theta_{0}\right)$.

## Initial incidence

A scalar value for the initial angle between the velocity vector and the body, $\left(\alpha_{0}\right)$.

## Initial body rotation rate

A scalar value for the initial body rotation rate, $\left(q_{0}\right)$.
Initial position ( $\mathbf{x}, \mathrm{z}$ )
A two-element vector containing the initial location of the body in the flat Earth reference frame.

## Initial mass

A scalar value for the initial mass of the body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia

A scalar value for the empty inertia of the body.

## Full inertia

A scalar value for the full inertia of the body.

## Gravity source

Specify source of gravity:

| External | Variable gravity input to block |
| :--- | :--- |
| Internal | Constant gravity specified in <br> Acceleration due to gravity |

## Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0 . This parameter appears if you set Gravity source to Internal.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Inputs and Outputs

| Input $\quad$ Dimension Type | Description |
| :--- | :--- |
| First | Contains the force acting along the body $x$-axis, |
|  | $\left(F_{x}\right)$. |
| Second | $\left.\begin{array}{l}\text { Contains the force acting along the body } z \text {-axis, } \\ \\ \end{array} F_{z}\right)$. |


| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| Third |  | Contains the applied pitch moment, ( $M$ ). |
| Fourth |  | Contains one or more rates of change of mass, ( $\dot{m}$ ) (positive if accreted, negative if ablated). |
| Fifth <br> (Optional) |  | Contains the gravity in the selected units. |
| Sixth <br> (Optional) | Two-element vector | Contains one or more relative velocities at which the mass is accreted to or ablated from the body in body-fixed axes. |
| Output | Dimension Type | Description |
| First |  | Contains the pitch attitude, in radians ( $\theta$ ). |
| Second |  | Contains the pitch angular rate, in radians per second ( $q$ ). |
| Third |  | Contains the pitch angular acceleration, in radians per second squared ( $\dot{q}$ ). |
| Fourth | Two-element vector | Contains the location of the body, in the flat Earth reference frame, $(X e, Z e)$. |
| Fifth | Two-element vector | Contains the velocity of the body resolved into the body-fixed coordinate frame, $(u, w)$. |
| Sixth | Two-element vector | Contains the acceleration of the body resolved into the body-fixed coordinate frame, $(A x, A z)$. |
| Seventh | Scalar element | Contains a flag for fuel tank status, (Fuel): <br> - 1 indicates that the tank is full. <br> - 0 indicates that the integral is neither full nor empty. <br> - -1 indicates that the tank is empty. |

## See Also

3DOF (Body Axes)
3DOF (Wind Axes)

Custom Variable Mass 3DOF (Body Axes)
Custom Variable Mass 3DOF (Wind Axes)
Simple Variable Mass 3DOF (Wind Axes)

## Simple Variable Mass 3DOF (Wind Axes)

Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes

## Library

Equations of Motion/3DOF

## Description



The Simple Variable Mass 3DOF (Wind Axes) block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat Earth reference frame.


The equations of motion are

$$
\begin{aligned}
& \dot{V}=\frac{F_{x_{\text {wind } d}}}{m}-\frac{\dot{m} V r e_{x_{\text {wind }}}}{m}-g \sin \gamma \\
& \dot{\alpha}=\frac{F_{z_{\text {wind }}}}{m V}+q+\frac{g}{V} \cos \gamma-\frac{\dot{m} V r e_{z_{\text {wind }}}}{m V} \\
& \dot{q}=\dot{\theta}=\frac{M_{y_{\text {body }}}-\dot{I}_{y y} q}{I_{y y}} \\
& \dot{\gamma}=q-\dot{\alpha} \\
& \dot{I}_{y y}=\frac{I_{y y f u l l}-I_{\text {yyempty }}}{m_{\text {full }}-m_{\text {empty }}} \dot{m}
\end{aligned}
$$

where the applied forces are assumed to act at the center of gravity of the body. Vre $\mathrm{w}_{\mathrm{w}}$ is the relative velocity in the wind axes at which the mass flow ( $\dot{m}$ ) is ejected or added to the wind axes.

## Dialog Box

| Function Block Parameters: Simple Variable Mass 3DOF (Wind Axes) $x$ |
| :---: |
| 3DOF Wind EoM (mask) (link) |
| Integrate the three-degrees-of-freedom equations of motion in wind axes to determine position, velocity, attitude, and related values. |
| Parameters |
| Units: Metric (MKS) |
| Mass type: Simple Variable |
| Initial airspeed: |
| 100 |
| Initial flight path angle: |
| 0 |
| Initial incidence: |
| 0 |
| Initial body rotation rate: |
| 0 |
| Initial position ( x z): |
| [00] |
| Initial mass: |
| 1.0 |
| Empty mass: |
| 0.5 |
| Full mass: |
| 3.0 |
| Empty inertia body axes: |
| 0.5 |
| Full inertia body axes: |
| 3.0 |
| Gravity source: ExternalInclude mass flow relative velocity |
|  |  |
|  |

## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metric <br> (MKS) | Newton | Newton meter | Meters per second squared | Meters per second | Meters | Kilogram | Kilogram meter squared |
| English (Velocity in ft/s) | Pound | Foot pound | Feet per second squared | Feet per second | Feet | Slug | Slug foot squared |
| $\begin{aligned} & \text { English } \\ & \text { (Velocity } \\ & \text { in kts) } \end{aligned}$ | Pound | Foot pound | Feet per second squared | Knots | Feet | Slug | Slug foot squared |

## Mass Type

Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation. |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable. |

The Simple Variable selection conforms to the previously described equations of motion.

## Initial airspeed

A scalar value for the initial velocity of the body, $\left(V_{0}\right)$.

## Initial flight path angle

A scalar value for the initial flight path angle of the body, $\left(\gamma_{0}\right)$.

## Initial incidence

A scalar value for the initial angle between the velocity vector and the body, $\left(\alpha_{0}\right)$.
Initial body rotation rate
A scalar value for the initial body rotation rate, $\left(q_{0}\right)$.
Initial position ( $\mathbf{x}, \mathbf{z}$ )

A two-element vector containing the initial location of the body in the flat Earth reference frame.

## Initial mass

A scalar value for the initial mass of the body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia

A scalar value for the empty inertia of the body.

## Full inertia

A scalar value for the full inertia of the body.

## Gravity source

Specify source of gravity:

| External | Variable gravity input to block |
| :--- | :--- |
| Internal | Constant gravity specified in <br> Acceleration due to gravity |

## Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0 . This parameter appears if you set Gravity source to Internal.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Inputs and Outputs

| Input | Dimension Type |
| :--- | :--- |
| First | Description |
|  | Contains the force acting along the wind $x$-axis, $\left(F_{x}\right)$. |


| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| Second |  | Contains the force acting along the wind $z$-axis, $\left(F_{z}\right)$. |
| Third |  | Contains the applied pitch moment in body axes, $(M)$. |
| Fourth |  | Contains one or more rates of change of mass, ( $\dot{m}$ ) (positive if accreted, negative if ablated). |
| Fifth <br> (Optional) |  | Contains the gravity in the selected units. |
| Sixth <br> (Optional) | Two-element vector | Contains one or more relative velocities at which the mass is accreted to or ablated from the body in wind axes. |
| Output | Dimension Type | Description |
| First |  | Contains the flight path angle, in radians ( $\gamma$ ). |
| Second |  | Contains the pitch angular rate, in radians per second ( $\omega_{y}$ ). |
| Third |  | Contains the pitch angular acceleration, in radians per second squared ( $d \omega_{y} / d t$ ). |
| Fourth | Two-element vector | Contains the location of the body, in the flat Earth reference frame, ( $X e, Z e$ ). |
| Fifth | Two-element vector | Contains the velocity of the body resolved into the windfixed coordinate frame, $(V, 0)$. |
| Sixth | Two-element vector | Contains the acceleration of the body resolved into the body-fixed coordinate frame, $(A x, A z)$. |
| Seventh | Scalar | Contain the angle of attack, $\left(\alpha_{0}\right)$. |
| Eight | Scalar element | Contains a flag for fuel tank status, (Fuel): <br> - 1 indicates that the tank is full. <br> - 0 indicates that the integral is neither full nor empty. <br> - -1 indicates that the tank is empty. |

## Reference

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

## See Also

3DOF (Body Axes)<br>3DOF (Wind Axes)<br>Custom Variable Mass 3DOF (Body Axes)<br>Custom Variable Mass 3DOF (Wind Axes)<br>Simple Variable Mass 3DOF (Body Axes)

## Simple Variable Mass 6DOF (Euler Angles)

Implement Euler angle representation of six-degrees-of-freedom equations of motion of simple variable mass

## Library

Equations of Motion/6DOF


The Simple Variable Mass 6DOF (Euler Angles) block considers the rotation of a bodyfixed coordinate frame ( $X_{b}, Y_{b}, Z_{b}$ ) about a flat Earth reference frame ( $X_{e}, Y_{e}, Z_{e}$ ). The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.


## Flat Earth reference frame

The translational motion of the body-fixed coordinate frame is given below, where the applied forces $\left[F_{x} F_{y} F_{z}\right]^{T}$ are in the body-fixed frame. $V r e_{b}$ is the relative velocity in the body axes at which the mass flow ( $\dot{m}$ ) is ejected or added to the body in body axes.

$$
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega} \times \bar{V}_{b}\right)+\dot{m} \bar{V} r e_{b} \\
& \bar{V}_{b}=\left[\begin{array}{l}
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right], \bar{\omega}=\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
\end{aligned}
$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[\mathrm{L} \mathrm{M} \mathrm{N}]^{\mathrm{T}}$, and the inertia tensor $I$ is with respect to the origin O .

$$
\begin{aligned}
& \bar{M}_{B}=\left[\begin{array}{l}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}+\bar{\omega} \times(I \bar{\omega})+\dot{I} \bar{\omega} \\
& I=\left[\begin{array}{lll}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
$$

The inertia tensor is determined using a table lookup which linearly interpolates between $I_{\text {full }}$ and $I_{\text {empty }}$ based on mass $(m)$. While the rate of change of the inertia tensor is estimated by the following equation.

$$
\dot{I}=\frac{I_{\text {full }}-I_{\text {empty }}}{m_{\text {full }}-m_{\text {empty }}} \dot{m}
$$

The relationship between the body-fixed angular velocity vector, $[\mathrm{pqq}]^{\mathrm{T}}$, and the rate of change of the Euler angles, $[\dot{\phi} \dot{\theta} \dot{\psi}]^{\mathrm{T}}$, can be determined by resolving the Euler rates into the body-fixed coordinate frame.

$$
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{lll}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\psi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

Inverting $J$ then gives the required relationship to determine the Euler rate vector.

$$
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ll}
1(\sin \phi \tan \theta) & (\cos \phi \tan \theta) \\
0 \cos \phi & -\sin \phi \\
0 \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

## Dialog Box



## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metric (MKS) | Newton | Newton meter | Meters per second squared | Meters per second | Meters | Kilogram | Kilogram meter squared |
| English (Velocity in ft/s) | Pound | Foot pound | Feet per second squared | Feet per second | Feet | Slug | Slug foot squared |
| English (Velocity in kts) | Pound | Foot pound | Feet per second squared | Knots | Feet | Slug | Slug foot squared |

Mass Type
Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation. |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable. |

The Simple Variable selection conforms to the previously described equations of motion.

## Representation

Select the representation to use:

| Euler Angles | Use Euler angles within equations of <br> motion. |
| :--- | :--- |
| Quaternion | Use quaternions within equations of <br> motion. |

The Euler Angles selection conforms to the previously described equations of motion.

## Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

## Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

## Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

## Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

## Initial mass

The initial mass of the rigid body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia matrix

A 3-by- 3 inertia tensor matrix for the empty inertia of the body.

## Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Inputs and Outputs

| Input | Dimension Type | Description | | |
|---|---|---|---|---|
| First | Vector | Contains the three applied forces. |
| Second | Vector | Contains the three applied moments. |
| Third | Scalar | Contains one or more rates of change of mass. |
| Fourth <br> (Optional) | Three-element | vector | | Contains one or more relative velocities at which the |
| :--- |
| mass is accreted to or ablated from the body in body- |
| fixed axes. |


| Output | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Three-element vector | Contains the velocity in the flat Earth reference frame. |
| Second | Three-element vector | Contains the position in the flat Earth reference frame. |
| Third | Three-element vector | Contains the Euler rotation angles [roll, pitch, yaw], in radians. |
| Fourth | 3-by-3 matrix | Applies to the coordinate transformation from flat Earth axes to body-fixed axes. |
| Fifth | Three-element vector | Contains the velocity in the body-fixed frame. |
| Sixth | Three-element vector | Contains the angular rates in body-fixed axes, in radians per second. |
| Seventh | Three-element vector | Contains the angular accelerations in body-fixed axes, in radians per second squared. |
| Eight | Three-element vector | Contains the accelerations in body-fixed axes. |
| Ninth | Scalar element | Contains a flag for fuel tank status: <br> - 1 indicates that the tank is full. <br> - 0 indicates that the integral is neither full nor empty. <br> - -1 indicates that the tank is empty. |

## Assumptions and Limitations

The block assumes that the applied forces are acting at the center of gravity of the body.

## Reference

Mangiacasale, L., Flight Mechanics of a $\mu$-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.
See Also
6DOF (Euler Angles)6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

## Simple Variable Mass 6DOF (Quaternion)

Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass with respect to body axes

## Library

Equations of Motion/6DOF


For a description of the coordinate system and the translational dynamics, see the block description for the Simple Variable Mass 6DOF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below. The gain $K$ drives the norm of the quaternion state vector to 1.0 should $\varepsilon$ become nonzero. You must choose the value of this gain with care, because a large value improves the decay rate of the error in the norm, but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one element of the quaternion vector is spread equally among all the elements, potentially increasing the error in the state vector.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=1 / 2\left[\begin{array}{cccc}
0 & -p & -q & -r \\
p & 0 & r & -q \\
q & -r & 0 & p \\
r & q & -p & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]+K \varepsilon\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]} \\
& \varepsilon=1-\left(q_{0}{ }^{2}+{q_{1}}^{2}+{q_{3}}^{2}+q_{4}^{2}\right)
\end{aligned}
$$

## Dialog Box



## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Metric <br> (MKS) | Newton | Newton <br> meter | Meters per second <br> squared | Meters <br> per <br> second | Meters | Kilogram | Kilogram <br> meter <br> squared |
| English <br> (Velocity <br> in ft/s) | Pound | Foot <br> pound | Feet per second <br> squared | Feet per <br> second | Feet | Slug | Slug foot <br> squared |
| English <br> (Velocity <br> in kts) | Pound | Foot <br> pound | Feet per second <br> squared | Knots | Feet | Slug | Slug foot <br> squared |

## Mass Type

Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation. |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable. |

The Simple Variable selection conforms to the previously described equations of motion.

## Representation

Select the representation to use:

| Euler Angles | Use Euler angles within equations of <br> motion. |
| :--- | :--- |
| Quaternion | Use quaternions within equations of <br> motion. |

The Quaternion selection conforms to the previously described equations of motion.

## Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

## Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

## Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

## Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

## Initial mass

The initial mass of the rigid body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body.

## Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body.

## Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Vector | Contains the three applied forces. |


| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| Second | Vector | Contains the three applied moments. <br> Third |
| Scalar | Contains one or more rates of change of mass (positive if <br> accreted, negative if ablated). |  |
| Fourth  <br> (Optional) Three-element <br> vector  | Contains one or more relative velocities at which the <br> mass is accreted to or ablated from the body in body- <br> fixed axes. |  |


| Output | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Three-element vector | Contains the velocity in the flat Earth reference frame. |
| Second | Three-element vector | Contains the position in the flat Earth reference frame. |
| Third | Three-element vector | Contains the Euler rotation angles [roll, pitch, yaw], in radians. |
| Fourth | 3-by-3 matrix | Applies to the coordinate transformation from flat Earth axes to body-fixed axes. |
| Fifth | Three-element vector | Contains the velocity in the body-fixed frame. |
| Sixth | Three-element vector | Contains the angular rates in body-fixed axes, in radians per second. |
| Seventh | Three-element vector | Contains the angular accelerations in body-fixed axes, in radians per second squared. |
| Eight | Three-element vector | Contains the accelerations in body-fixed axes. |
| Ninth | Scalar element | Contains a flag for fuel tank status: <br> - 1 indicates that the tank is full. <br> - 0 indicates that the integral is neither full nor empty. <br> - -1 indicates that the tank is empty. |

## Assumptions and Limitations

The block assumes that the applied forces are acting at the center of gravity of the body.

## Reference

Mangiacasale, L., Flight Mechanics of a $\mu$-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

## See Also

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

## Simple Variable Mass 6DOF ECEF (Quaternion)

Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass in Earth-centered Earth-fixed (ECEF) coordinates

## Library

Equations of Motion/6DOF


The Simple Variable Mass 6DOF ECEF (Quaternion) block considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame ( $X_{E C E F}, Y_{E C E F}, Z_{E C E F}$ ) about an Earth-centered inertial (ECI) reference frame ( $X_{E C I}, Y_{E C I}, Z_{E C I}$ ). The origin of the ECEF coordinate frame is the center of the Earth, additionally the body of interest is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to consider only the constant rotation of the ellipsoid Earth ( $\omega_{e}$ ) including an initial celestial longitude $\left(L_{G}(0)\right)$. This excellent approximation allows the forces due to the Earth's complex motion relative to the "fixed stars" to be neglected.


The translational motion of the ECEF coordinate frame is given below, where the applied forces $\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}$ are in the body frame. $V r e_{\mathrm{b}}$ is the relative velocity in the wind axes at which the mass flow ( $\dot{m}$ ) is ejected or added to the body axes.

$$
\begin{aligned}
\bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]= & m\left(\dot{\bar{V}}_{b}+\bar{\omega}_{b} \times \bar{V}_{b}+D C M_{b f} \bar{\omega}_{e} \times \bar{V}_{b}+D C M_{b f}\left(\bar{\omega}_{e} \times\left(\bar{\omega}_{e} \times \bar{X}_{f}\right)\right)\right) \\
& +\dot{m}\left(\bar{V} r e_{b}+D C M_{b f}\left(\bar{\omega}_{e} \times \bar{X}_{f}\right)\right)
\end{aligned}
$$

where the change of position in ECEF $\dot{\bar{x}}_{f}\left(\dot{\bar{x}}_{i}\right)$ is calculated by

$$
\dot{\bar{x}}_{f}=D C M_{f b} \bar{V}_{b}
$$

and the velocity of the body with respect to ECEF frame, expressed in body frame $\left(\bar{V}_{b}\right)$, angular rates of the body with respect to ECI frame, expressed in body frame ( $\bar{\omega}_{b}$ ). Earth
rotation rate $\left(\bar{\omega}_{e}\right)$, and relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body frame $\left(\bar{\omega}_{r e l}\right)$ are defined as

$$
\begin{aligned}
& \bar{V}_{b}=\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right] \bar{\omega}_{r e l}=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \bar{\omega}_{e}=\left[\begin{array}{c}
0 \\
0 \\
\omega_{e}
\end{array}\right] \\
& \bar{\omega}_{b}=\bar{\omega}_{r e l}+D C M_{b f} \bar{\omega}_{e}+D C M_{b e} \bar{\omega}_{n e d} \\
& \bar{\omega}_{n e d}=\left[\begin{array}{c}
i \cos \mu \\
-\dot{\mu} \\
-\dot{l} \sin \mu
\end{array}\right]=\left[\begin{array}{c}
V_{E} /(N+h) \\
-V_{N} /(M+h) \\
V_{E} \tan \mu /(N+h)
\end{array}\right]
\end{aligned}
$$

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied moments are $[L M N]^{\mathrm{T}}$, and the inertia tensor $I$ is with respect to the origin 0 .

$$
\begin{aligned}
& \bar{M}_{b}=\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=\bar{I} \dot{\bar{\omega}}_{b}+\bar{\omega}_{b} \times\left(\bar{I} \bar{\omega}_{b}\right)+\dot{I} \bar{\omega}_{b} \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
$$

The inertia tensor is determined using a table lookup which linearly interpolates between $I_{\text {full }}$ and $I_{\text {empty }}$ based on mass ( $m$ ). The rate of change of the inertia tensor is estimated by the following equation.

$$
\dot{I}=\frac{I_{\text {full }}-I_{\text {empty }}}{m_{\text {full }}-m_{\text {empty }}} \dot{m}
$$

The integration of the rate of change of the quaternion vector is given below.

$$
\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=-1 / 2\left[\begin{array}{cccc}
0 & \omega_{b}(1) & \omega_{b}(2) & \omega_{b}(3) \\
-\omega_{b}(1) & 0 & -\omega_{b}(3) & \omega_{b}(2) \\
-\omega_{b}(2) & \omega_{b}(3) & 0 & -\omega_{b}(1) \\
-\omega_{b}(3) & -\omega_{b}(2) & \omega_{b}(1) & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
$$

## Dialog Box



Function Block Parameters: Simple Variable Mass 6DOF ECEF (Quat... $\mathrm{X}^{2}$ 6DOF EoM (ECEF) (mask) (link)

Integrate the six-degrees-of-freedom equations of motion using a quaternion representation for the orientation of the body in space.

Main Planet
Planet model: Earth (WGS84)
Celestial longitude of Greenwich source: Internal
Celestial longitude of Greenwich [deg]:
0

## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metric (MKS) | Newton | Newton meter | Meters per second squared | Meters per second | Meters | Kilogram | Kilogram meter squared |
| English (Velocity in ft/s) | Pound | Foot pound | Feet per second squared | Feet per second | Feet | Slug | Slug foot squared |
| English (Velocity in kts) | Pound | Foot pound | Feet per second squared | Knots | Feet | Slug | Slug foot squared |

Mass type
Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation (see 6DOF ECEF <br> (Quaternion)). |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable (see Custom Variable Mass <br> 6DOF ECEF (Quaternion)). |

The Simple Variable selection conforms to the previously described equations of motion.

## Initial position in geodetic latitude, longitude and altitude

The three-element vector for the initial location of the body in the geodetic reference frame. Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

## Initial velocity in body axes

The three-element vector containing the initial velocity of the body with respect to the ECEF frame, expressed in the body frame.

## Initial Euler orientation

The three-element vector containing the initial Euler rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and NED coordinate systems.

## Initial body rotation rates

The three-element vector for the initial angular rates of the body with respect to the NED frame, expressed the body frame, in radians per second.

## Initial mass

The mass of the rigid body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body.

## Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

## Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for ECEF position. This option is only available when Planet model is set to Custom.

## Flattening

Specifies the flattening of the planet. This option is only available when Planet model is set to Custom.

## Rotational rate

Specifies the scalar rotational rate of the planet in rad/s. This option is only available when Planet model is set to Custom.

## Celestial longitude of Greenwich source

Specifies the source of Greenwich meridian's initial celestial longitude:

| Internal | Use celestial longitude value from <br> Celestial longitude of Greenwich. |
| :--- | :--- |


| External | Use external input for celestial longitude <br> value. |
| :--- | :--- |

## Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the $x$-axis of the ECI frame. This parameter appears if you set Celestial longitude of Greenwich source to Internal.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Vector | $\begin{array}{l}\text { Contains the three applied forces in body- } \\ \text { fixed axes. }\end{array}$ |
| Second | Vector | $\begin{array}{l}\text { Contains the three applied moments in body- } \\ \text { fixed axes. } \\ \text { Contains one or more rates of change of mass } \\ \text { (positive if accreted, negative if ablated). }\end{array}$ |
| Third | Scalar | Three-element vector |
| Fourth |  |  |
| Contains one or more relative velocities at |  |  |
| which the mass is accreted to or ablated from |  |  |
| the body-fixed axes. |  |  |$]$


| Output | Dimension Type | Description <br> Applies to the coordinate transformation from <br> NED axes to body-fixed axes. |
| :--- | :--- | :--- |
| Sixth | 3-by-3 matrix | Applies to the coordinate transformation from <br> ECEF axes to NED axes. |
| Sighth | 3-by-3 matrix | Three-element vector |
| Contains the velocity of body with respect to |  |  |
| ECEF frame, expressed in body frame. |  |  |
| Contains the relative angular rates of body |  |  |
| with respect to NED frame, expressed in body |  |  |
| frame, in radians per second. |  |  |
| Contains the angular rates of the body with |  |  |
| respect to ECI frame, expressed in body |  |  |
| frame, in radians per second. |  |  |
| Tenth | Three-element vector |  |

## Assumptions and Limitations

This implementation assumes that the applied forces are acting at the center of gravity of the body.

This implementation generates a geodetic latitude that lies between $\pm 90$ degrees, and longitude that lies between $\pm 180$ degrees. Additionally, the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be achieved. The Earth's precession, nutation, and polar motion are neglected. The
celestial longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the $x$-axis intersects the Greenwich meridian and the equator, the $z$-axis is the mean spin axis of the planet, positive to the north, and the $y$-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at the center of the planet, the $x$-axis is the continuation of the line from the center of the Earth through the center of the Sun toward the vernal equinox, the $z$-axis points in the direction of the mean equatorial plane's north pole, positive to the north, and the $y$-axis completes the right-hand system.

## References

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second Edition, John Wiley \& Sons, New York, 2003.

McFarland, Richard E., A Standard Kinematic Model for Flight simulation at NASAAmes, NASA CR-2497.
"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2A.

## See Also

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DOF (Euler Angles)<br>Custom Variable Mass 6DOF (Quaternion)<br>Custom Variable Mass 6DOF ECEF (Quaternion)<br>Custom Variable Mass 6DOF Wind (Quaternion)<br>Custom Variable Mass 6DOF Wind (Wind Angles)<br>Simple Variable Mass 6DOF (Euler Angles)<br>Simple Variable Mass 6DOF (Quaternion)<br>Simple Variable Mass 6DOF Wind (Quaternion)<br>Simple Variable Mass 6DOF Wind (Wind Angles)

## Simple Variable Mass 6DOF Wind (Quaternion)

Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes

## Library

Equations of Motion/6DOF


The Simple Variable Mass 6DOF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame ( $X_{w}, Y_{w}, Z_{w}$ ) about an flat Earth reference frame ( $X_{e}, Y_{e}, Z_{e}$ ). The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.


Flat Earth reference frame

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces $\left[\mathrm{F}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}} \mathrm{F}_{\mathrm{z}}\right]^{\mathrm{T}}$ are in the wind-fixed frame. Vre ${ }_{\mathrm{w}}$ is the relative velocity in the wind axes at which the mass flow ( $\dot{m}$ ) is ejected or added to the body.

$$
\begin{aligned}
& \bar{F}_{w}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{w}+\bar{\omega}_{w} \times \bar{V}_{w}\right)+\dot{m} \bar{V} r e_{w} \\
& \bar{V}_{w}=\left[\begin{array}{l}
V \\
0 \\
0
\end{array}\right], \bar{\omega}_{w}=\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right], \bar{w}_{b}\left[\begin{array}{c}
p_{b} \\
q_{b} \\
r_{b}
\end{array}\right]
\end{aligned}
$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[\mathrm{L} \mathrm{M} \mathrm{N}]^{\mathrm{T}}$, and the inertia tensor $I$ is with respect to the origin O . Inertia tensor $I$ is much easier to define in body-fixed frame.

$$
\begin{aligned}
& \bar{M}_{b}=\left[\begin{array}{l}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}_{b}+\bar{\omega}_{b} \times\left(I \bar{\omega}_{b}\right)+\dot{I} \bar{\omega}_{b} \\
& I=\left[\begin{array}{lll}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
$$

The inertia tensor is determined using a table lookup which linearly interpolates between $I_{\text {full }}$ and $I_{\text {empty }}$ based on mass $(m)$. While the rate of change of the inertia tensor is estimated by the following equation.

$$
\dot{I}=\frac{I_{\text {full }}-I_{\text {empty }}}{m_{\text {full }}-m_{\text {empty }}} \dot{m}
$$

The integration of the rate of change of the quaternion vector is given below.

$$
\left[\begin{array}{l}
\dot{q}_{0} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=-1 / 2\left[\begin{array}{llll}
0 & p & q & r \\
-p & 0 & -r & q \\
-q & r & 0 & -p \\
-r & -q & p & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
$$

## Dialog Box

| - Function Block Parameters: Simple Variable Mass 6DOF Wind (Quat... $x$ |  |  |
| :---: | :---: | :---: |
| 6DOF EoM (Wind Axis) (mask) (link) |  |  |
| Integrate the six-degrees-of-freedom equations of motion in wind axis. |  |  |
| Parameters |  |  |
| Units: Metric (MKS) |  |  |
| Mass type: Simple Variable |  |  |
| Representation: Quaternion |  |  |
| Initial position in inertial axes [ $\mathrm{Xe}, \mathrm{Ye}, \mathrm{Ze}$ ]: |  |  |
| $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ |  |  |
| Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]: |  |  |
| $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ |  |  |
| Initial wind orientation [bank angle,flight path angle,heading angle]: |  |  |
| $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ |  |  |
| Initial body rotation rates [p,q,r]: |  |  |
| $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ |  |  |
| Initial mass: |  |  |
| 1.0 |  |  |
| Empty mass: |  |  |
| 0.5 |  |  |
| Full mass: |  |  |
| 2.0 |  |  |
| Empty inertia matrix in body axis: |  |  |
| eye(3) |  |  |
| Full inertia matrix in body axis: |  |  |
| 2*eye(3) |  |  |
| $\square$ Include mass flow relative velocity |  |  |
| OK | Help | Apply |

## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metric (MKS) | Newton | Newton meter | Meters per second squared | Meters per second | Meters | Kilogram | Kilogram meter squared |
| English (Velocity in ft/s) | Pound | Foot pound | Feet per second squared | Feet per second | Feet | Slug | Slug foot squared |
| English (Velocity in kts) | Pound | Foot pound | Feet per second squared | Knots | Feet | Slug | Slug foot squared |

## Mass Type

Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation. |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable. |

The Simple Variable selection conforms to the previously described equations of motion.

## Representation

Select the representation to use:

| Wind Angles | Use wind angles within equations of <br> motion. |
| :--- | :--- |
| Quaternion | Use quaternions within equations of <br> motion. |

The Quaternion selection conforms to the previously described equations of motion. Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

## Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

## Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

## Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

## Initial mass

The initial mass of the rigid body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body, in body-fixed axes.

## Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed axes.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Vector | Contains the three applied forces in wind-fixed axes. |
| Second | Vector | Contains the three applied moments in body-fixed axes. |
| Third | Scalar or vector | Contains one or more rates of change of mass. |


| Input Dimension Type | Description |
| :--- | :--- |
| Fourth Vector <br> (Optional | Contains one or more relative velocities at which the mass <br> is accreted to or ablated from the body in wind axes. |


| Output | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Three-element vector | Contains the velocity in the flat Earth reference frame. |
| Second | Three-element vector | Contains the position in the flat Earth reference frame. |
| Third | Three-element vector | Contains the wind rotation angles [bank, flight path, heading], in radians. |
| Fourth | 3-by-3 matrix | Applies to the coordinate transformation from flat Earth axes to wind-fixed axes. |
| Fifth | Three-element vector | Contains the velocity in the wind-fixed frame. |
| Sixth | Two-element vector | Contains the angle of attack and sideslip angle, in radians. |
| Seventh | Two-element vector | Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second. |
| Eighth | Three-element vector | Contains the angular rates in body-fixed axes, in radians per second. |
| Ninth | Three-element vector | Contains the angular accelerations in body-fixed axes, in radians per second squared. |
| Tenth | Three-element vector | Contains the accelerations in body-fixed axes. |
| Eleventh | Scalar element | Contains a flag for fuel tank status: <br> - 1 indicates that the tank is full. <br> - 0 indicates that the integral is neither full nor empty. <br> - -1 indicates that the tank is empty. |

## Assumptions and Limitations

The block assumes that the applied forces are acting at the center of gravity of the body.

## References

Mangiacasale, L., Flight Mechanics of a $\mu$-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

## See Also

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

## Simple Variable Mass 6DOF Wind (Wind Angles)

Implement wind angle representation of six-degrees-of-freedom equations of motion of simple variable mass

## Library

Equations of Motion/6DOF

## Description



For a description of the coordinate system employed and the translational dynamics, see the block description for the Simple Variable Mass 6DOF (Quaternion) block.

The relationship between the wind angles, $[\mu \gamma \chi]^{T}$, can be determined by resolving the wind rates into the wind-fixed coordinate frame.

$$
\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{l}
\dot{\mu} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\gamma} \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{lll}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\chi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{l}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]
$$

Inverting $J$ then gives the required relationship to determine the wind rate vector.

$$
\left[\begin{array}{l}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]=J\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{lll}
1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\
0 & \cos \mu & -\sin \mu \\
0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma}
\end{array}\right]\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]
$$

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

$$
\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
$$

Using this relationship in the wind rate vector equations, gives the relationship between the wind rate vector and the body-fixed angular rates.

$$
\left[\begin{array}{c}
\dot{\mu} \\
\dot{\gamma} \\
\dot{\chi}
\end{array}\right]=J\left[\begin{array}{c}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{ll}
1(\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\
0 \cos \mu & -\sin \mu \\
0 \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma}
\end{array}\right] D M C_{w b}\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
$$

## Dialog Box



## Units

Specifies the input and output units:

| Units | Forces | Moment | Acceleration | Velocity | Position | Mass | Inertia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metric (MKS) | Newton | Newton meter | Meters per second squared | Meters per second | Meters | Kilogram | Kilogram meter squared |
| English (Velocity in ft/s) | Pound | Foot pound | Feet per second squared | Feet per second | Feet | Slug | Slug foot squared |
| English (Velocity in kts) | Pound | Foot pound | Feet per second squared | Knots | Feet | Slug | Slug foot squared |

Mass Type
Select the type of mass to use:

| Fixed | Mass is constant throughout the <br> simulation. |
| :--- | :--- |
| Simple Variable | Mass and inertia vary linearly as a <br> function of mass rate. |
| Custom Variable | Mass and inertia variations are <br> customizable. |

The Simple Variable selection conforms to the previously described equations of motion.

## Representation

Select the representation to use:

| Wind Angles | Use wind angles within equations of <br> motion. |
| :--- | :--- |
| Quaternion | Use quaternions within equations of <br> motion. |

The Wind Angles selection conforms to the previously described equations of motion.

## Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

## Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

## Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

## Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

## Initial mass

The initial mass of the rigid body.

## Empty mass

A scalar value for the empty mass of the body.

## Full mass

A scalar value for the full mass of the body.

## Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body, in body-fixed axes.

## Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed axes.

## Include mass flow relative velocity

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which the mass is accreted or ablated.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Vector | Contains the three applied forces in wind-fixed axes. |
| Second | Vector | Contains the three applied moments in body-fixed axes. <br> Third |
| Scalar or vector | Contains one or more rates of change of mass. This value <br> is positive if the mass is added (accreted) to the body in <br> wind axes. It is negative if the mass is ejected (ablated) <br> from the body in wind axes. |  |


| Input $\quad$ Dimension Type | Description |
| :--- | :--- | :--- |
| Fourth Three-element | Contains one or more relative velocities at which the mass |
| (Optional vector | is accreted to or ablated from the body in wind axes. |


| Output | Dimension Type | Description |
| :---: | :---: | :---: |
| First | Three-element vector | Contains the velocity in the fixed Earth reference frame. |
| Second | Three-element vector | Contains the position in the flat Earth reference frame. |
| Third | Three-element vector | Contains the wind rotation angles [bank, flight path, heading], in radians. |
| Fourth | 3-by-3 matrix | Applies to the coordinate transformation from flat Earth axes to wind-fixed axes. |
| Fifth | Three-element vector | Contains the velocity in the wind-fixed frame. |
| Sixth | Two-element vector | Contains the angle of attack and sideslip angle, in radians. |
| Seventh | Two-element vector | Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second. |
| Eighth | Three-element vector | Contains the angular rates in body-fixed axes, in radians per second. |
| Ninth | Three-element vector | Contain the angular accelerations in body-fixed axes, in radians per second squared. |
| Tenth | Three-element vector | Contains the accelerations in body-fixed axes. |
| Eleventh | Scalar element | Contains a flag for fuel tank status: <br> - 1 indicates that the tank is full. <br> - 0 indicates that the integral is neither full nor empty. <br> - -1 indicates that the tank is empty. |

## Assumptions and Limitations

The block assumes that the applied forces are acting at the center of gravity of the body.

## References

Mangiacasale, L., Flight Mechanics of a $\mu$-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley \& Sons, New York, 1992.

## See Also

6DOF (Euler Angles)
6DOF (Quaternion)
6DOF ECEF (Quaternion)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DOF (Euler Angles)
Custom Variable Mass 6DOF (Quaternion)
Custom Variable Mass 6DOF ECEF (Quaternion)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 6DOF (Euler Angles)
Simple Variable Mass 6DOF (Quaternion)
Simple Variable Mass 6DOF ECEF (Quaternion)
Simple Variable Mass 6DOF Wind (Quaternion)

## Simulation Pace

Set simulation rate for improved animation viewing

## Library

Animation/Animation Support Utilities


The Simulation Pace block lets you run the simulation at the specified pace so that connected animations appear aesthetically pleasing.

This block does not produce deployable code.
Use the Sample time parameter to set how often the Simulink interface synchronizes with the wall clock.

The sample time of this block should be considered for human interaction with visualizations. The default is $1 / 30$ th of a second, chosen to correspond to a 30 frames-persecond visualization rate (typical for desktop computers).

Caution Choose as slow a sample time as needed for smooth animation, since oversampling has little benefit and undersampling can cause animation "jumpiness" and potentially block the MATLAB main thread on your computer.

The model that contains this block must have its solver set to Fixed-step. The sample time for this block must be discrete. In addition, the block sample time and its optional offset time must be finite. The block sample time must be either greater than 0.0 or an inherited sample time (-1).

## Dialog Box



## Simulation pace

Specifies the ratio of simulation time to clock time. The default is 1 second of simulation time per second of clock time.

## Sleep mode

Setting the Sleep mode parameter to off lets you disable the pace functionality and run as fast as possible.

## Output pace error

If you select this check box, the block outputs the "pace error" value (simulationTime minus ClockTime), in seconds. The pace error is positive if the simulation is running faster than the specified pace and negative if slower than the specified pace.

## Sample time

Specify the sample time ( -1 for inherited). Larger sample times result in more efficient simulations, but less smooth in output pace when there are multiple Simulink time steps between pacer block samples. If the Sample time is too large, the MATLAB interface may become less responsive as MATLAB and Simulink calculations are blocked from running when the block puts the MATLAB interface to sleep.

## Inputs and Outputs

The block optionally outputs the "pace error" value (simulationTime minus ClockTime), in seconds. The pace error is positive if the simulation is running faster than the specified pace and negative if slower than the specified pace.

Outputting the pace error from the block lets you record the overall pace achieved during the simulation or routing the signal to other blocks to make decisions about the simulation if the simulation is too slow to keep up with the specified pace.

## Assumptions and Limitations

The simulation pace is implemented by putting the entire MATLAB thread to sleep until it needs to run again to keep up the pace. The Simulink software is single threaded and runs on the one MATLAB thread, so only one Simulation Pace block can be active at a time.

## Examples

See asbhl20 for an example of this block.

## See Also

Pilot Joystick

## SinCos

Compute sine and cosine of angle

Note: SinCos will be removed in a future release. Use the Simulink Trigonometric Function block instead.

## Library

Utilities/Math Operations

## Description $\underset{\substack{\sin (u) \mid \\\{\cos (u)\}}}{\mid}$

The SinCos block computes the sine and cosine of the input angle, theta.

## Dialog Box

Block Parameters: SinCos

| SinCos (mask) (link) - |  |
| :---: | :---: |
| Compute the sine and cosine of input, u. u is in radians. |  |
| OK | Cancel |

## Inputs and Outputs

The first input is an angle, in radians.
The first output is the sine of the input angle.
The second output is the cosine of the input angle.

## Spherical Harmonic Gravity Model

Implement spherical harmonic representation of planetary gravity

## Library

Environment/Gravity


The Spherical Harmonic Gravity Model block implements the mathematical representation of spherical harmonic planetary gravity based on planetary gravitational potential. It provides a convenient way to describe a planet gravitational field outside of its surface in spherical harmonic expansion.

You can use spherical harmonics to modify the magnitude and direction of spherical gravity (-GM/r ${ }^{2}$ ). The most significant or largest spherical harmonic term is the second degree zonal harmonic, J2, which accounts for oblateness of a planet.

Use this block if you want more accurate gravity values than spherical gravity models. For example, nonatmospheric flight applications might require higher accuracy.

## Dialog Box

```
/ Function Block Parameters: Spherical Harmonic Gravity Model

Spherical Harmonic Gravity Model (mask) (link)
Calculate a spherical harmonic representation of planetary gravity at a specific location based on planetary gravitational potential.

The maximum degree available depends upon the planet model selected. For EGM2008, the maximum degree and order is 2159. For EGM96, the maximum degree and order is 360 . For LP100K, the maximum degree and order is 100 . For LP165P, the maximum degree and order is 165 . For GMM2B, the maximum degree and order is 80 . For EIGENGL04C, the maximum degree and order is 360 .

Position is entered in length units of selected unit system.
\begin{tabular}{|l|l|}
\hline Main & Planet \\
Units: & Metric (MKS) \\
Degree: \\
\hline 120 \\
Action for out of range input: Warning
\end{tabular}

OK
Cancel
Help
Apply
```

直 Function Block Parameters: Spherical Harmonic Gravity Model X
Spherical Harmonic Gravity Model (mask) (link)
Calculate a spherical harmonic representation of planetary gravity at a specific location based on planetary gravitational potential.
The maximum degree available depends upon the planet model selected. For EGM2008, the maximum degree and order is 2159. For EGM96, the maximum degree and order is 360 . For LP100K, the maximum degree and order is 100 . For LP165P, the maximum degree and order is 165 . For GMM2B, the maximum degree and order is 80 . For EIGENGL04C, the maximum degree and order is 360
Position is entered in length units of selected unit system.

```

\section*{Main Planet}
```

Planet model: EGM2008

```


\section*{Units}

Specifies the parameter and output units:
\begin{tabular}{|l|l|}
\hline Units & Height \\
\hline Metric (MKS) & Meters \\
\hline English & Feet \\
\hline
\end{tabular}

\section*{Degree}

Specify the degree of harmonic model. Recommended degrees are:
\begin{tabular}{|l|l|}
\hline Planet Model & Degree \\
\hline EGM2008 & 120 \\
\hline EGM96 & 70 \\
\hline LP100K & 60 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Planet Model & Degree \\
\hline LP165P & 60 \\
\hline GMM2B & 60 \\
\hline EIGENGL04C & 70 \\
\hline
\end{tabular}

\section*{Action for out of range input}

Specify if out-of-range input invokes a warning, error, or no action.

\section*{Planet model}

Specify the planetary model. From the list, select:
\begin{tabular}{|l|l|}
\hline Planet Model & Notes \\
\hline EGM2008 & \begin{tabular}{l}
Earth — Is the latest Earth spherical harmonic \\
gravitational model from National Geospatial-Intelligence \\
Agency (NGA). This block provides the WGS-84 version \\
of this gravitational model. You can use the EGM96 \\
planetary model if you need to use the older standard for \\
Earth.
\end{tabular} \\
\hline EGM96 & Earth \\
\hline LP100K & \begin{tabular}{l}
Moon - Is best for lunar orbit determination based upon \\
computational time required to compute orbits. This \\
planet model was created in approximately the same year \\
as LP165P with similar data.
\end{tabular} \\
\hline LP165P & \begin{tabular}{l}
Moon - Is best for extended lunar mission orbit \\
accuracy. This planet model was created in approximately \\
the same year as LP165P with similar data.
\end{tabular} \\
\hline GMM2B & Mars \\
\hline Custom & \begin{tabular}{l}
Enables you to specify your own planetary model. This \\
option enables the Planet mat-file parameter.
\end{tabular} \\
\hline EIGENGL04C & \begin{tabular}{l}
Earth - Supports the gravity field model, EIGEN-GL04C \\
(http: / /icgem.gfz - potsdam. de / ICGEM/). This model \\
is an upgrade to EIGEN-CG03C.
\end{tabular} \\
\hline
\end{tabular}

When defining your own planetary model, the Degree parameter is limited to the maximum value for int16. When inputting a large degree, you might receive an out-of-memory error. For more information about avoiding out-of-memory errors in the MATLAB environment, see "Memory Usage".

\section*{Planet mat-file}

Specify a MAT-file that contains definitions for a custom planetary model. The aerogmm2b. mat file in the Aerospace Toolbox is the default MAT-file for a custom planetary model.

This file must contain:
\begin{tabular}{|l|l|}
\hline Variable & Description \\
\hline\(R e\) & Scalar of planet equatorial radius in meters (m). \\
\hline GM & \begin{tabular}{l}
Scalar of planetary gravitational parameter in meters cubed per \\
second squared \(\left(\mathrm{m}^{3} / \mathrm{s}^{2}\right)\)
\end{tabular} \\
\hline degree & Scalar of maximum degree. \\
\hline C & \begin{tabular}{l}
(degree +1\()\)-by-(degree +1\()\) matrix containing normalized spherical \\
harmonic coefficients matrix, \(C\).
\end{tabular} \\
\hline S & \begin{tabular}{l}
(degree +1\()\)-by-(degree +1\()\) matrix containing normalized spherical \\
harmonic coefficients matrix, \(S\).
\end{tabular} \\
\hline
\end{tabular}

When using a large value for Degree, you might receive an out-of-memory error. For more information about avoiding out-of-memory errors in the MATLAB environment, see "Memory Usage".

\section*{References}
[1] Gottlieb, R. G., "Fast Gravity, Gravity Partials, Normalized Gravity, Gravity Gradient Torque and Magnetic Field: Derivation, Code and Data," Technical Report NASA Contractor Report 188243, NASA Lyndon B. Johnson Space Center, Houston, Texas, February 1993.
[2] Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.
[3] "NIMA TR8350.2: Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems".
[4] Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogen, D. N. Yuan., "Recent Gravity Models as a Result of the Lunar Prospector Mission, Icarus", Vol. 150, no. 1, pp 1-18, 2001.
[5] Lemoine, F. G., D. E. Smith, D.D. Rowlands, M.T. Zuber, G. A. Neumann, and D. S. Chinn, "An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor", Journal Of Geophysical Research, Vol. 106, No. E10, pp 23359-23376, October 25, 2001.
[6] Kenyon S., J. Factor, N. Pavlis, and S. Holmes, "Towards the Next Earth Gravitational Model", Society of Exploration Geophysicists 77th Annual Meeting, San Antonio, Texas, September 23-28, 2007.
[7] Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor, "An Earth Gravitational Model to Degree 2160: EGM2008", presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18, 2008.
[8] Grueber, T., and A. Köhl, "Validation of the EGM2008 Gravity Field with GPSLeveling and Oceanographic Analyses", presented at the IAG International Symposium on Gravity, Geoid \& Earth Observation 2008, Chania, Greece, June 23-27, 2008.
[9] Förste, C., Flechtner, F., Schmidt, R., König, R., Meyer, U., Stubenvoll, R., Rothacher, M., Barthelmes, F., Neumayer, H., Biancale, R., Bruinsma, S., Lemoine, J.M., Loyer, S., "A Mean Global Gravity Field Model From the Combination of Satellite Mission and Altimetry/Gravmetry Surface Data - EIGEN-GL04C", Geophysical Research Abstracts, Vol. 8, 03462, 2006.
[10] Hill, K. A. (2007). Autonomous Navigation in Libration Point Orbits. Doctoral dissertation, University of Colorado, Boulder. http://ccar.colorado.edu/geryon/ papers/Misc/Hill_thesis.pdf.
[11] Colombo, Oscar L., "Numerical Methods for Harmonic Analysis on the Sphere", Reports of the department of Geodetic Science, Report No. 310, The Ohio State University, Columbus, OH., March 1981.
[12] Colombo, Oscar L., "The Global Mapping of Gravity with Two Satellites", Nederlands Geodetic Commission, vol. 7 No. 3, Delft, The Nederlands, 1984., Reports of the department of Geodetic Science, Report No. 310, The Ohio State University, Columbus, OH., March 1981.
[13] Jones, Brandon A. (2010). Efficient Models for the Evaluation and Estimation of the Gravity Field. Doctoral dissertation, University of Colorado, Boulder. http:// ccar.colorado.edu/geryon/papers/Misc/bajones_phd.pdf.

\section*{Symmetric Inertia Tensor}

Create inertia tensor from moments and products of inertia

\section*{Library}

Mass Properties

The Symmetric Inertia Tensor block creates an inertia tensor from moments and products of inertia. Each input corresponds to an element of the tensor.

The inertia tensor has the form of
\[
\text { Inertia }=\left[\begin{array}{lll}
I_{x x} & -I_{x y} & -I_{y z} \\
-I_{x y} & I_{y y} & -I_{x z} \\
-I_{y z} & -I_{x z} & I_{z z}
\end{array}\right]
\]

\section*{Dialog Box}

\section*{Inputs and Outputs}
\begin{tabular}{ll}
Input & Dimension Type \\
First & \begin{tabular}{l}
Description \\
Contains the moment of inertia about the \(x\) - \\
axis.
\end{tabular} \\
Second & \begin{tabular}{l}
Contains the product of inertia in the \(x y\) plane. \\
Third \\
Fourth
\end{tabular} \\
\begin{tabular}{l}
Contains the product of inertia in the \(x z\) plane. \\
Cifth \\
Cixth \\
axis.
\end{tabular} & \begin{tabular}{l}
Contains the moment of inertia about the \(y\) - \\
Contains the moment of inertia about the \(z\) - \\
axis.
\end{tabular} \\
Output & Dimension Type \\
First & Description
\end{tabular}

\section*{See Also}

Create 3x3 Matrix

\section*{Temperature Conversion}

Convert from temperature units to desired temperature units

\section*{Library}

Utilities/Unit Conversions

\section*{Description \(\sqrt{R} \rightarrow \quad \mathrm{~K}\)}

The Temperature Conversion block computes the conversion factor from specified input temperature units to specified output temperature units and applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}

\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.

The following conversion units are available:
\begin{tabular}{|l|l|}
\hline K & Kelvin \\
\hline F & Degrees Fahrenheit \\
\hline C & Degrees Celsius \\
\hline R & Degrees Rankine \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & \begin{tabular}{l}
Contains the temperature in initial temperature \\
units.
\end{tabular} \\
\hline Output & Dimension Type & \begin{tabular}{l}
Description
\end{tabular} \\
\hline First & \begin{tabular}{l}
Contains the temperature in final temperature \\
units.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion

4 Blocks - Alphabetical List

Velocity Conversion

\section*{Three-Axis Accelerometer}

\author{
Implement three-axis accelerometer
}

\section*{Library}

GNC/Navigation

The Three-Axis Accelerometer block implements an accelerometer on each of the three axes. The ideal measured accelerations (\(\bar{A}_{\text {imeas }}\)) include the acceleration in body axes at the center of gravity (\(\bar{A}_{b}\)), lever arm effects due to the accelerometer not being at the center of gravity, and, optionally, gravity in body axes can be removed.
\[
\bar{A}_{\text {imeas }}=\bar{A}_{b}+\bar{\omega}_{b} \times\left(\bar{\omega}_{b} \times \bar{d}\right)+\dot{\bar{\omega}}_{b} \times \bar{d}-\bar{g}
\]
where \(\bar{\omega}_{b}\) are body-fixed angular rates, \(\overline{\bar{\omega}}_{b}\) are body-fixed angular accelerations and \(\bar{d}\) is the lever arm. The lever arm \((\bar{d})\) is defined as the distances that the accelerometer group is forward, right and below the center of gravity.
\[
\bar{d}=\left[\begin{array}{l}
d_{x} \\
d_{y} \\
d_{z}
\end{array}\right]=\left[\begin{array}{c}
-\left(x_{a c c}-x_{C G}\right) \\
y_{a c c}-y_{C G} \\
-\left(z_{a c c}-z_{C G}\right)
\end{array}\right]
\]

The orientation of the axes used to determine the location of the accelerometer group (\(x_{a c c}, y_{a c c}, z_{a c c}\)) and center of gravity (\(x_{C G}, y_{C G}, z_{C G}\)) is from the zero datum (typically the nose) to aft, to the right of the vertical centerline and above the horizontal centerline. The \(x\)-axis and \(z\)-axis of this measurement axes are opposite the body-fixed axes producing the negative signs in the lever arms for \(x\)-axis and \(z\)-axis.

Measured accelerations (\(\bar{A}_{\text {meas }}\)) output by this block contain error sources and are defined as
\[
\bar{A}_{\text {meas }}=\bar{A}_{\text {imeas }} \times \bar{A}_{S F C C}+\bar{A}_{\text {bias }}+\text { noise }
\]
where \(\bar{A}_{S F C C}\) is a 3-by-3 matrix of scaling factors on the diagonal and misalignment terms in the nondiagonal, and \(\bar{A}_{b i a s}\) are the biases.

Optionally discretizations can be applied to the block inputs and dynamics along with nonlinearizations of the measured accelerations via a Saturation block.

\section*{Dialog Box}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|ll|l|}
\hline Units & Acceleration & Length \\
\hline Metric (MKS) & Meters per second squared & Meters \\
\hline English & Feet per second squared & Feet \\
\hline
\end{tabular}

\section*{Accelerometer location}

The location of the accelerometer group is measured from the zero datum (typically the nose) to aft, to the right of the vertical centerline and above the horizontal centerline. This measurement reference is the same for the center of gravity input. The units are in selected length units.

\section*{Subtract gravity}

Select to subtract gravity from acceleration readings.

\section*{Second order dynamics}

Select to apply second-order dynamics to acceleration readings.

\section*{Natural frequency (rad/sec)}

The natural frequency of the accelerometer. The units of natural frequency are radians per second.

\section*{Damping ratio}

The damping ratio of the accelerometer. A dimensionless parameter.

\section*{Scale factors and cross-coupling}

The 3-by-3 matrix used to skew the accelerometer from body axes and to scale accelerations along body axes.

\section*{Measurement bias}

The three-element vector containing long-term biases along the accelerometer axes. The units are in selected acceleration units.

\section*{Update rate (sec)}

Specify the update rate of the accelerometer. An update rate of 0 will create a continuous accelerometer. If noise is selected and the update rate is 0 , then the noise will be updated at the rate of 0.1 . The units of update rate are seconds.

\section*{Noise on}

Select to apply white noise to acceleration readings.

\section*{Noise seeds}

The scalar seeds for the Gaussian noise generator for each axis of the accelerometer.

\section*{Noise power}

The height of the PSD of the white noise for each axis of the accelerometer.

\section*{Lower and upper output limits}

The six-element vector containing three minimum values and three maximum values of acceleration in each of the accelerometer axes. The units are in selected acceleration units.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & \begin{tabular}{l}
Description \\
First
\end{tabular} \\
\begin{tabular}{ll}
Three-element vector & \begin{tabular}{l}
Contains the actual accelerations in body-fixed \\
axes, in selected units.
\end{tabular} \\
Second & Three-element vector
\end{tabular} \begin{tabular}{l}
Contains the angular rates in body-fixed axes, \\
in radians per second.
\end{tabular} \\
Third & Three-element vector & \begin{tabular}{l}
Contains the angular accelerations in body- \\
fixed axes, in radians per second squared.
\end{tabular} \\
Fourth & Three-element vector & \begin{tabular}{l}
Contains the location of the center of gravity, in \\
selected units.
\end{tabular} \\
\begin{tabular}{lll}
Fifth \\
(Optional)
\end{tabular} & Three-element vector & \begin{tabular}{l}
Contains the gravity, in selected units.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Output & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l}
Contains the measured accelerations from the \\
accelerometer, in selected units.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

Vibropendulous error and hysteresis effects are not accounted for in this block. Additionally, this block is not intended to model the internal dynamics of different forms of the instrument.

Note: This block requires the Control System Toolbox product for discrete operation (nonzero sample time).

\section*{Reference}

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series, 2000.

\section*{See Also}

\author{
Three-Axis Gyroscope \\ Three-Axis Inertial Measurement Unit
}

\section*{Three-Axis Gyroscope}

Implement three-axis gyroscope

\section*{Library}

GNC/Navigation

\section*{Description \(\xlongequal{\sqrt{20}}\)}

The Three-Axis Gyroscope block implements a gyroscope on each of the three axes. The measured body angular rates (\(\bar{\omega}_{\text {meas }}\)) include the body angular rates (\(\bar{\omega}_{b}\)), errors, and optionally discretizations and nonlinearizations of the signals.
\[
\bar{\omega}_{\text {meas }}=\bar{\omega}_{b} \times \bar{\omega}_{S F C C}+\bar{\omega}_{\text {bias }}+G s \times \bar{\omega}_{\text {gsens }}+\text { noise }
\]
where \(\bar{\omega}_{S F C C}\) is a 3-by- 3 matrix of scaling factors on the diagonal and misalignment terms in the nondiagonal, \(\bar{\omega}_{\text {bias }}\) are the biases, (Gs) are the Gs on the gyroscope, and \(\bar{\omega}_{g s e n s}\) are the g -sensitive biases.

Optionally discretizations can be applied to the block inputs and dynamics along with nonlinearizations of the measured body angular rates via a Saturation block.

\section*{Dialog Box}
\begin{tabular}{|l|}
\hline Function Block Parameters: Three-axis Gyroscope \\
Three-axis Gyroscope (mask) (link) \\
Implement a three-axis gyroscope. \\
\hline Main Noise \\
V Second-order dynamics \\
Natural frequency (rad/sec): \\
\hline 190 \\
Damping ratio: \\
\hline 0.707 \\
Scale factors and cross-coupling: \\
\hline\([100 ; 010 ; 001]\) \\
Measurement bias: \\
\hline\([000]\) \\
G-sensitive bias: \\
\hline 0000 \\
Update rate (sec): \\
\hline 0 \\
\hline
\end{tabular}

\section*{Second order dynamics}

Select to apply second-order dynamics to gyroscope readings.

\section*{Natural frequency (\(\mathrm{rad} / \mathrm{sec}\))}

The natural frequency of the gyroscope. The units of natural frequency are radians per second.

\section*{Damping ratio}

The damping ratio of the gyroscope. A dimensionless parameter.

\section*{Scale factors and cross-coupling}

The 3-by-3 matrix used to skew the gyroscope from body axes and to scale angular rates along body axes.

\section*{Measurement bias}

The three-element vector containing long-term biases along the gyroscope axes. The units are in radians per second.

\section*{G-sensitive bias}

The three-element vector contains the maximum change in rates due to linear acceleration. The units are in radians per second per g-unit.

\section*{Update rate (sec)}

Specify the update rate of the gyroscope. An update rate of 0 will create a continuous gyroscope. If noise is selected and the update rate is 0 , then the noise will be updated at the rate of 0.1. The units of update rate are seconds.

\section*{Noise on}

Select to apply white noise to gyroscope readings.

\section*{Noise seeds}

The scalar seeds for the Gaussian noise generator for each axis of the gyroscope.

\section*{Noise power}

The height of the PSD of the white noise for each axis of the gyroscope.

\section*{Lower and upper output limits}

The six-element vector containing three minimum values and three maximum values of angular rates in each of the gyroscope axes. The units are in radians per second.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l}
Contains the angular rates in body-fixed axes, \\
in radians per second.
\end{tabular} \\
Second & Three-element vector & \begin{tabular}{l}
Contains the accelerations in body-fixed axes, in \\
Gs.
\end{tabular} \\
\hline Output & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l}
Contains the measured angular rates from the \\
gyroscope, in radians per second.
\end{tabular} \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}

Anisoelastic bias and anisoinertial bias effects are not accounted for in this block. Additionally, this block is not intended to model the internal dynamics of different forms of the instrument.

Note: This block requires the Control System Toolbox product for discrete operation (nonzero sample time).

\section*{Reference}

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series, 2000.

\section*{See Also}

Three-Axis Accelerometer
Three-Axis Inertial Measurement Unit

\title{
Three-Axis Inertial Measurement Unit
}

Implement three-axis inertial measurement unit (IMU)

\section*{Library}

GNC/Navigation

The Three-Axis Inertial Measurement Unit block implements an inertial measurement unit (IMU) containing a three-axis accelerometer and a three-axis gyroscope.

For a description of the equations and application of errors, see the Three-Axis Accelerometer block and the Three-Axis Gyroscope block reference pages.

\section*{Dialog Box}

\begin{tabular}{l}
Manction Block Parameters: Three-axis Inertial Measurement Unit \\
Three-axis Inertial Measurement Unit (mask) (link) \\
Implement a three-axis inertial measurement unit (IMU). \\
\begin{tabular}{|l|l|l|}
\hline Main & Accelerometer & Gyroscope \\
\hline Second-order dynamics for accelerometer \\
\hline Accelerometer natural frequency (rad/sec): \\
\hline 190 \\
Accelerometer damping ratio: \\
\hline 0.707 \\
Accelerometer scale factor and cross-coupling: \\
\hline\([100 ; 010 ; 001]\) \\
Accelerometer measurement bias: \\
\hline\([000]\) \\
Accelerometer upper and lower limits: \\
\hline [-inf -inf -inf inf inf inf] \\
\hline
\end{tabular} \\
\hline OK Cancel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{- Function Block Parameters: Three-axis Inertial Measurement Unit \(x^{\text {a }}\)} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Three-axis Inertial Measurement Unit (mask) (link) Implement a three-axis inertial measurement unit (IMU).}} \\
\hline & & & & \\
\hline Main & Accelerometer & Gyroscope & Noise & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{V Second-order dynamics for gyro Gyro natural frequency (rad/sec):}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{190} \\
\hline \multicolumn{5}{|l|}{Gyro damping ratio:} \\
\hline \multicolumn{5}{|l|}{0.707} \\
\hline \multicolumn{5}{|l|}{Gyro scale factors and cross-coupling:} \\
\hline \multicolumn{5}{|l|}{[100; \(010 ; 001]\)} \\
\hline \multicolumn{5}{|l|}{Gyro measurement bias:} \\
\hline \multicolumn{5}{|l|}{\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline \multicolumn{5}{|l|}{G-sensitive bias:} \\
\hline \multicolumn{5}{|l|}{\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline \multicolumn{5}{|l|}{Gyro upper and lower limits:} \\
\hline \multicolumn{5}{|l|}{[-inf -inf -inf inf inf inf]} \\
\hline & OK & Cance & Help & Apply \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|}
\hline Units & Acceleration & Length \\
\hline Metric (MKS) & Meters per second squared & Meters \\
\hline English & Feet per second squared & Feet \\
\hline
\end{tabular}

\section*{IMU location}

The location of the IMU, which is also the accelerometer group location, is measured from the zero datum (typically the nose) to aft, to the right of the vertical centerline and above the horizontal centerline. This measurement reference is the same for the center of gravity input. The units are in selected length units.

\section*{Update rate (sec)}

Specify the update rate of the accelerometer and gyroscope. An update rate of 0 will create a continuous accelerometer and continuous gyroscope. If noise is selected and
the update rate is 0 , then the noise will be updated at the rate of 0.1 . The units of update rate are seconds.

\section*{Second order dynamics for accelerometer}

Select to apply second-order dynamics to acceleration readings.

\section*{Accelerometer natural frequency (\(\mathrm{rad} / \mathrm{sec}\))}

The natural frequency of the accelerometer. The units of natural frequency are radians per second.

\section*{Accelerometer damping ratio}

The damping ratio of the accelerometer. A dimensionless parameter.

\section*{Accelerometer scale factors and cross-coupling}

The 3-by-3 matrix used to skew the accelerometer from body-axis and to scale accelerations along body-axis.

\section*{Accelerometer measurement bias}

The three-element vector containing long-term biases along the accelerometer axes. The units are in selected acceleration units.

\section*{Accelerometer lower and upper output limits}

The six-element vector containing three minimum values and three maximum values of acceleration in each of the accelerometer axes. The units are in selected acceleration units.

\section*{Gyro second order dynamics}

Select to apply second-order dynamics to gyroscope readings.

\section*{Gyro natural frequency (\(\mathrm{rad} / \mathrm{sec}\))}

The natural frequency of the gyroscope. The units of natural frequency are radians per second.

\section*{Gyro damping ratio}

The damping ratio of the gyroscope. A dimensionless parameter.

\section*{Gyro scale factors and cross-coupling}

The 3 -by- 3 matrix used to skew the gyroscope from body axes and to scale angular rates along body axes.

\section*{Gyro measurement bias}

The three-element vector containing long-term biases along the gyroscope axes. The units are in radians per second.

\section*{G-sensitive bias}

The three-element vector contains the maximum change in rates due to linear acceleration. The units are in radians per second per g-unit.

\section*{Gyro lower and upper output limits}

The six-element vector containing three minimum values and three maximum values of angular rates in each of the gyroscope axes. The units are in radians per second.

\section*{Noise on}

Select to apply white noise to acceleration and gyroscope readings.

\section*{Noise seeds}

The scalar seeds for the Gaussian noise generator for each axis of the accelerometer and gyroscope.

\section*{Noise power}

The height of the PSD of the white noise for each axis of the accelerometer and gyroscope.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l}
Contains the actual accelerations in body-fixed \\
axes, in selected units.
\end{tabular} \\
Second & Three-element vector & \begin{tabular}{l}
Contains the angular rates in body-fixed axes, \\
in radians per second.
\end{tabular} \\
Third & Three-element vector & \begin{tabular}{l}
Contains the angular accelerations in body- \\
fixed axes, in radians per second squared.
\end{tabular} \\
Fourth & Three-element vector & \begin{tabular}{l}
Contains the location of the center of gravity, in \\
selected units.
\end{tabular} \\
Fifth & Three-element vector & \begin{tabular}{l}
Contains the gravity, in selected units.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
Output & Dimension Type & Description \\
First & Three-element vector & \begin{tabular}{l}
Contains the measured accelerations from the \\
accelerometer, in selected units.
\end{tabular} \\
Second & Three-element vector & \begin{tabular}{l}
Contains the measured angular rates from the \\
gyroscope, in radians per second.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

Vibropendulous error, hysteresis affects, anisoelastic bias and anisoinertial bias are not accounted for in this block. Additionally, this block is not intended to model the internal dynamics of different forms of the instrument.

Note: This block requires the Control System Toolbox product for discrete operation (nonzero sample time).

\section*{Examples}

See asbhl20 for an example of this block.

\section*{Reference}

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series, 2000.

\section*{See Also}

\author{
Three-Axis Accelerometer
}

Three-Axis Gyroscope

\section*{Turbofan Engine System}

Implement first-order representation of turbofan engine with controller

\section*{Library}

Propulsion

The Turbofan Engine System block computes the thrust and the weight of fuel flow of a turbofan engine and controller at a specific throttle position, Mach number, and altitude.

This system is represented by a first-order system with unitless heuristic lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine time constant. For the lookup table data, thrust is a function of throttle position and Mach number, TSFC is a function of thrust and Mach number, and engine time constant is a function of thrust. The unitless lookup table outputs are corrected for altitude using the relative pressure ratio \(\delta\) and relative temperature ratio \(\theta\), and scaled by maximum sea level static thrust, fastest engine time constant at sea level static, sea level static thrust specific fuel consumption, and ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units selected from the Units list.

\section*{Dialog Box}
\begin{tabular}{l}
Function Block Parameters: Turbofan Engine System \\
Turbofan Engine System (mask) (link) \\
Implement a turbofan engine system. The turbofan engine system \\
includes both engine and controller. \\
Throttle position can vary from zero to one, corresponding to no and \\
full throttle. Altitude, initial thrust, and maximum thrust are entered \\
in the same unit system as selected from the block for thrust and fuel \\
flow output. \\
Parameters \\
Units: Metric (MKS) \\
Initial thrust source: Internal \\
Initial thrust: \\
\hline 0 \\
Maximum sea-level static thrust: \\
\hline 45000 \\
Fastest engine time constant at sea-level static (sec): \\
\hline 1 \\
Sea-level static thrust specific fuel consumption: \\
\hline 0.35 \\
Ratio of installed thrust to uninstalled thrust: \\
\hline 0.9 \\
OK \\
\hline Cancel \\
Help \\
\hline
\end{tabular}

\section*{Units}

Specifies the input and output units:
\begin{tabular}{|l|l|l|l|}
\hline Units & Altitude & Thrust & Fuel Flow \\
\hline Metric (MKS) & Meters & Newtons & Kilograms per second \\
\hline English & Feet & Pound force & Pound mass per second \\
\hline
\end{tabular}

\section*{Initial thrust source}

Specifies the source of initial thrust:
\begin{tabular}{|l|l|}
\hline Internal & \begin{tabular}{l}
Use initial thrust value from mask \\
dialog.
\end{tabular} \\
\hline External & \begin{tabular}{l}
Use external input for initial thrust \\
value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Initial thrust}

Initial value for thrust.

\section*{Maximum sea-level static thrust}

Maximum thrust at sea-level and at Mach \(=0\).

\section*{Fastest engine time constant at sea-level static}

Fastest engine time at sea level.

\section*{Sea-level static thrust specific fuel consumption}

Thrust specific fuel consumption at sea level, at Mach \(=0\), and at maximum thrust, in specified mass units per hour per specified thrust units.

\section*{Ratio of installed thrust to uninstalled thrust}

Coefficient representing the loss in thrust due to engine installation.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & \begin{tabular}{l}
Contains the throttle position, which can vary \\
from zero to one, corresponding to no and full \\
throttle.
\end{tabular} \\
Second & \begin{tabular}{l}
Contains the Mach number. \\
Contains the altitude in specified length units.
\end{tabular} \\
Third & Dimension Type & Description \\
Output & \begin{tabular}{l}
Contains the thrust in specified force units. \\
First \\
Second
\end{tabular} & \begin{tabular}{l}
Con second
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The atmosphere is at standard day conditions and an ideal gas.
The Mach number is limited to less than 1.0.
This engine system is for indication purposes only. It is not meant to be used as a reference model.

This engine system is assumed to have a high bypass ratio.

\section*{References}

Aeronautical Vestpocket Handbook, United Technologies Pratt \& Whitney, August, 1986.
Raymer, D. P., Aircraft Design: A Conceptual Approach, AIAA Education Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics of Propulsion, AddisonWesley Publishing Company, Reading, Massachusetts, 1970.

\section*{Tustin Pilot Model}

Represent Tustin pilot model

\section*{Library}

Pilot Models

\section*{Description}

The Tustin Pilot Model block represents the pilot model that A. Tustin describes in The Nature of the Operator's Response in Manual Control, and its Implications for Controller Design. (For more information, see [1].) When modeling human pilot models, use this block for the least accuracy, compared to that provided by the Crossover Pilot Model and Precision Pilot Model blocks. This block requires less input than those blocks, and provides better performance. However, the results might be less accurate.

This pilot model is a single input, single output (SISO) model that represents human behavior, based on the transfer function:
\[
\frac{u(s)}{e(s)}=\frac{K_{p}(1+T s)}{s} e^{-\tau s}
\]

In this equation:
\begin{tabular}{|l|l|}
\hline Variable & Description \\
\hline\(K_{p}\) & Pilot gain. \\
\hline\(T\) & Lead constant. \\
\hline\(\tau\) & \begin{tabular}{l}
Transport delay time caused by the pilot \\
neuromuscular system.
\end{tabular} \\
\hline\(u(s)\) & \begin{tabular}{l}
Input to the aircraft model and output to the pilot \\
model.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Variable & Description \\
\hline\(e(s)\) & \begin{tabular}{l}
Error between the desired pilot value and the actual \\
value.
\end{tabular} \\
\hline
\end{tabular}

This block has non-linear behavior. If you want to linearize the block (for example, with one of the Simulink linmod functions), you might need to change the Pade approximation order. The Tustin Pilot Model block implementation incorporates the Simulink Transport Delay block with the Pade order (for linearization) parameter set to 2 by default. To change this value, use the set_param function, for example:
```

set_param(gcb,'pade','3')

```

\section*{Dialog Box}
\begin{tabular}{|l}
\hline Function Block Parameters: Tustin Pilot Model \\
TustinPilotModel (mask) (link) \\
Implement a human pilot model for a single-input, single-output \\
system, according to A. Tustin. \\
Parameters \\
Pilot gain: \\
\hline 1 \\
Pilot time delay (s): \\
\hline 0.1 \\
Pilot lead constant: \\
\hline 5
\end{tabular}

\section*{Pilot gain}

Specifies the pilot gain.

\section*{Pilot time delay (s)}

Specifies the total pilot time delay, in seconds. This value typically ranges from 0.1 s to 0.2 s .

\section*{Pilot lead constant}

Specifies the pilot lead constant.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
First & 1-by-1 & \begin{tabular}{l}
Contains the command for the signal that the pilot \\
model controls.
\end{tabular} \\
Second & 1-by-1 & Contains the signal that the pilot model controls. \\
Output & Dimension Type & Description \\
First & 1 -by-1 & Contains the command for the aircraft.
\end{tabular}

\section*{References}
[1] Tustin, A., The Nature of the Operator's Response in Manual Control, and its Implications for Controller Design. Convention on Automatic Regulators and Servo Mechanisms. May, 1947.

\author{
See Also \\ Crossover Pilot Model \| Precision Pilot Model
}

\section*{Unpack net_ctrl Packet from FlightGear}

Unpack net_ctrl variable packet received from FlightGear

\section*{Library}

Animation/Flight Simulator Interfaces

The Unpack net_ctrl Packet from FlightGear block unpacks net_ctrl variable packets received from FlightGear and makes them available for the Simulink environment.

\section*{Dialog Box}
```

Function Block Parameters: Unpack net_ctrl Packet from FlightGear
FlightGearUnpackNetCtrl (mask) (link)
Unpack a FlightGear net_ctrl data packet compatible with a particular
version of FlightGear Flight Simulator.
Press the help button for details on signals and signal groups.
Parameters
FlightGear version: v3.0
\square Show control surface position outputs
\square Show engine / fuel outputs
\square Show landing gear outputs
\square Show avionic outputs
V Show environment outputs
Sample time (-1 for inherited):
1/30

```

\section*{FlightGear version}

Select your FlightGear software version: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10, v1.0, v1.9.1, v2.0, v2.4, v2.6, v2.8, v2.10, v2.12, v3.0.

Note: If you are using a FlightGear version older than 2.0, the model displays a notification from the Simulink Upgrade Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more information, see "Supported FlightGear Versions".

\section*{Show control surface position outputs}

Select this check box to include the control surface position outputs (signal group 1) from the FlightGear net_ctrl data packet.

\section*{Show engine/fuel outputs}

Select this check box to include the engine and fuel outputs (signal group 2) from the FlightGear net_ctrl data packet.

\section*{Show landing gear outputs}

Select this check box to include the landing gear outputs (signal group 3) from the FlightGear net_ctrl data packet.

\section*{Show avionic outputs}

Select this check box to include the avionic outputs (signal group 4) from the FlightGear net_ctrl data packet.

\section*{Show environment outputs}

Select this check box to include the environment outputs (signal group 5) from the FlightGear net_ctrl data packet.

\section*{Sample time}

Specify the sample time (-1 for inherited).

\section*{Inputs and Outputs}

\section*{Output Signals Supported for FlightGear}
0.9.10/1.0/1.9.1/2.0/2.4/2.6/2.8/2.10/2.12/3.0

This table lists all the output signals supported for Versions \(0.9 .10,1.0,1.9 .1,2.0,2.4\), \(2.6,2.8,2.10,2.12\), and 3.0:

\section*{Signal Group 1: Control surface position outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline aileron & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Aileron position. \\
\hline elevator & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator position. \\
\hline rudder & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Rudder position. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline aileron_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Aileron trim position. \\
\hline elevator_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator trim position. \\
\hline rudder_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 1 & Rudder trim position. \\
\hline flaps & \begin{tabular}{l}
geometry \\
specific units
\end{tabular} & double & 1 & Flaps position. \\
\hline spoilers & \begin{tabular}{l}
geometry \\
specific units
\end{tabular} & double & 1 & Spoilers position. \\
\hline flaps_power & - & single & 1 & \begin{tabular}{l}
Power administered \\
to the flaps (1 = power \\
available).
\end{tabular} \\
\hline flap_motor_ok & - & single & 1 & \begin{tabular}{l}
Shows whether or not \\
the flap motor is working \\
properly.
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 2: Engine/fuel outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline num_engines & - & single & 1 & \begin{tabular}{l}
Number of valid \\
engines.
\end{tabular} \\
\hline master_bat & - & single & 1 & \begin{tabular}{l}
Master battery switch \\
position.
\end{tabular} \\
\hline master_alt & - & single & 1 & \begin{tabular}{l}
Master alternator switch \\
position.
\end{tabular} \\
\hline magnetos & - & single & 1 & \begin{tabular}{l}
Magnetos switch \\
position.
\end{tabular} \\
\hline starter_power & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & single & 1 & \begin{tabular}{l}
Starter power switch \\
position (1 = starter \\
power).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline throttle & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 1 & Throttle position. \\
\hline mixture & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 1 & \begin{tabular}{l}
Fuel mixture lever \\
position.
\end{tabular} \\
\hline condition & - & double & 1 & Condition lever position. \\
\hline fuel_pump_power & - & single & 1 & \begin{tabular}{l}
Fuel pump power switch \\
position (1 = on).
\end{tabular} \\
\hline prop_advance & - & double & 1 & \begin{tabular}{l}
Propeller blade advance \\
ratio.
\end{tabular} \\
\hline feed_tank_to & - & single & 1 & \begin{tabular}{l}
Tank feed switch \\
position.
\end{tabular} \\
\hline reverse & - & single & 1 & \begin{tabular}{l}
Reverse switch position.
\end{tabular} \\
\hline engine_ok & - & single & 1 & \begin{tabular}{l}
Indicates whether the \\
engine is okay or not.
\end{tabular} \\
\hline mag_left_ok & - & single & 1 & \begin{tabular}{l}
Indicates whether the \\
left magneto is okay or \\
not.
\end{tabular} \\
\hline mag_right_ok & - & single & \begin{tabular}{l}
Indes whether the \\
right magneto is okay or \\
not.
\end{tabular} \\
\hline spark_plugs_ok & - & single & \begin{tabular}{l}
Indicates whether the \\
spark plugs are fouled or \\
not (0 = fouled plugs).
\end{tabular} \\
\hline oil_press_status & - & single & \begin{tabular}{l}
Oil pressure status \\
indicator (0 = normal, 1 \\
= low, 2 = full failure).
\end{tabular} \\
\hline num_tanks & - & \begin{tabular}{l}
Indicates fuel pump \\
status.
\end{tabular} \\
\hline fuel_selector & - & \begin{tabular}{l}
Number of valid tanks.
\end{tabular} \\
\hline Fump_ok & & & \begin{tabular}{l}
Fuel selector switch \\
position. There is one
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline xfer_pump & & & & \begin{tabular}{l}
per each fuel tank. \((0=\) \\
off, \(1=\) on \().\)
\end{tabular} \\
\hline cross_feed & - & single & & \begin{tabular}{l}
Specifies transfer from \\
array value to tank \\
specified by an integer \\
value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 3: Landing gear outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline brake_left & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Left brake position for \\
the pilot.
\end{tabular} \\
\hline brake_right & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Right brake position for \\
the pilot.
\end{tabular} \\
\hline copilot_brake_left & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Left brake position for \\
the copilot.
\end{tabular} \\
\hline copilot_brake_right & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Right brake position for \\
the copilot.
\end{tabular} \\
\hline brake_parking & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & Parking brake position. \\
\hline gear_handle & - & single & 1 & \begin{tabular}{l}
Landing gear handle \\
position (0 = gear handle \\
up).
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 4: Avionics outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline master_avionics & - & single & 1 & Master avionics switch. \\
\hline comm_1 & Hz & double & 1 & \begin{tabular}{l}
Communications \\
primary frequency.
\end{tabular} \\
\hline comm_2 & Hz & double & 1 & \begin{tabular}{l}
Communications \\
secondary frequency.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline nav_1 & Hz & double & 1 & \begin{tabular}{l}
Navigation primary \\
frequency.
\end{tabular} \\
\hline nav_2 & Hz & double & 1 & \begin{tabular}{l}
Navigation secondary \\
frequency.
\end{tabular} \\
\hline
\end{tabular}

Signal Group 5: Environment outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline wind_speed_kt & knots & double & 1 & Wind speed. \\
\hline wind_dir_deg & deg & double & 1 & Wind direction. \\
\hline turbulence_norm & - & double & 1 & \begin{tabular}{l}
Turbulence magnitude, \\
normalized between 0 \\
and 1.
\end{tabular} \\
\hline temp_c & Degrees Celsius & double & 1 & Outside temperature. \\
\hline press_inhg & in Hg & double & 1 & Outside pressure. \\
\hline hground & meters & double & 1 & Ground elevation. \\
\hline magvar & deg & double & 1 & \begin{tabular}{l}
Local magnetic \\
variation.
\end{tabular} \\
\hline icing & - & single & 1 & Icing conditions. \\
\hline
\end{tabular}

Signal Group 6: Show Environment Inputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline agl & m & single & 1 & Above ground level. \\
\hline cur_time & sec & int32 & 1 & Current UNIX time. \\
\hline warp & sec & int32 & 1 & \begin{tabular}{l}
Offset in seconds to \\
UNIX time.
\end{tabular} \\
\hline visibility & m & single & 1 & \begin{tabular}{l}
Visibility in meters (for \\
visual effects).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Signals Supported for FlightGear 0.9.9}

This table lists all the output signals supported for Version 0.9.9:

Signal Group 1: Surface position outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline aileron & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Aileron position. \\
\hline elevator & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator position. \\
\hline rudder & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Rudder position. \\
\hline aileron_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Aileron trim position. \\
\hline elevator_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator trim position. \\
\hline rudder_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Rudder trim position. \\
\hline flaps & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 1 & Flaps position. \\
\hline flaps_power & - & single & 1 & \begin{tabular}{l}
Power administered \\
to the flaps \((1=\) power \\
available).
\end{tabular} \\
\hline flap_motor_ok & - & single & \begin{tabular}{l}
Shows whether or \\
not the flap motor is \\
working properly.
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 2: Engine/fuel outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline num_engines & - & single & 1 & \begin{tabular}{l}
Number of valid \\
engines.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline master_bat & - & single & 4 & \begin{tabular}{l}
Master battery switch \\
position.
\end{tabular} \\
\hline master_alt & - & single & 4 & \begin{tabular}{l}
Master alternator switch \\
position.
\end{tabular} \\
\hline magnetos & - & single & 4 & \begin{tabular}{l}
Magnetos switch \\
position.
\end{tabular} \\
\hline starter_power & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & \begin{tabular}{l}
Starter power switch \\
position (1 = starter \\
power).
\end{tabular} \\
\hline throttle & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & \begin{tabular}{l}
Throttle position.
\end{tabular} \\
\hline mixture & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & \begin{tabular}{l}
Fuel mixture lever \\
position.
\end{tabular} \\
\hline condition & - & Condition lever position.
\end{tabular}\(|\)\begin{tabular}{l}
Cingle \\
\hline fuel_pump_power
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline oil_press_status & - & single & 4 & \begin{tabular}{l}
Oil pressure status \\
indicator (0 = normal, 1 \\
= low, 2 = full failure).
\end{tabular} \\
\hline fuel_pump_ok & - & single & 4 & \begin{tabular}{l}
Indicates fuel pump \\
status.
\end{tabular} \\
\hline num_tanks & - & single & 1 & Number of valid tanks. \\
\hline fuel_selector & - & single & 8 & \begin{tabular}{l}
Fuel selector switch \\
position. There is one \\
per each fuel tank. \((0=\) \\
off, \(1=\) on).
\end{tabular} \\
\hline cross_feed & - & single & 1 & \begin{tabular}{l}
Cross feed fuel pump \\
switch indicator \((0=\) off, \\
\(1=\) on).
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 3: Landing gear outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline brake_left & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Left brake position for \\
the pilot.
\end{tabular} \\
\hline brake_right & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Right brake position for \\
the pilot.
\end{tabular} \\
\hline copilot_brake_left & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Left brake position for \\
the copilot.
\end{tabular} \\
\hline copilot_brake_right & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Right brake position for \\
the copilot.
\end{tabular} \\
\hline brake_parking & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & Parking brake position. \\
\hline gear_handle & - & single & 1 & \begin{tabular}{l}
Landing gear handle \\
position (0 = gear handle \\
up).
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 4: Avionics outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline master_avionics & - & single & 1 & Master avionics switch. \\
\hline
\end{tabular}

Signal Group 5: Environment outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline wind_speed_kt & knots & double & 1 & Wind speed. \\
\hline wind_dir_deg & deg & double & 1 & Wind direction. \\
\hline turbulence_norm & - & double & 1 & \begin{tabular}{l}
Turbulence magnitude, \\
normalized between 0 \\
and 1.
\end{tabular} \\
\hline temp_c & Degrees Celsius & double & 1 & Outside temperature \\
\hline press_inhg & In Hg & double & 1 & Outside pressure. \\
\hline hground & meters & double & 1 & Ground elevation. \\
\hline magvar & deg & double & 1 & \begin{tabular}{l}
Local magnetic \\
variation.
\end{tabular} \\
\hline icing & - & single & 1 & Icing conditions. \\
\hline
\end{tabular}

Output Signals Supported for FlightGear 0.9.8
This table lists all the output signals supported for Version 0.9.8.
Signal Group 1: Surface position outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline aileron & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Aileron position. \\
\hline elevator & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator position. \\
\hline elevator_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator trim position. \\
\hline rudder & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Rudder position. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline flaps & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 1 & Flaps position. \\
\hline flaps_power & - & double & 1 & \begin{tabular}{l}
Power administered \\
to the flaps \((1=\) power \\
available).
\end{tabular} \\
\hline flap_motor_ok & - & bool & 1 & \begin{tabular}{l}
Shows whether or \\
not the flap motor is \\
working properly.
\end{tabular} \\
\hline
\end{tabular}

Signal Group 2: Engine/fuel outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline num_engines & - & int & 1 & \begin{tabular}{l}
Number of valid \\
engines.
\end{tabular} \\
\hline master_bat & - & bool & 4 & \begin{tabular}{l}
Master battery switch \\
position.
\end{tabular} \\
\hline master_alt & - & bool & 4 & \begin{tabular}{l}
Master alternator switch \\
position.
\end{tabular} \\
\hline magnetos & - & int & 4 & \begin{tabular}{l}
Magnetos switch \\
position.
\end{tabular} \\
\hline starter_power & bool & 4 & \begin{tabular}{l}
Starter power switch \\
position (1 = starter \\
power).
\end{tabular} \\
\hline throttle & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & Throttle position. \\
\hline mixture & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & \begin{tabular}{l}
Fuel mixture lever \\
position.
\end{tabular} \\
\hline condition & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & Condition lever position. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline fuel_pump_power & - & bool & 4 & \begin{tabular}{l}
Fuel pump power switch \\
position (1 = on).
\end{tabular} \\
\hline prop_advance & - & double & 4 & \begin{tabular}{l}
Propeller blade advance \\
ratio.
\end{tabular} \\
\hline engine_ok & - & bool & 4 & \begin{tabular}{l}
Indicates whether the \\
engine is okay or not.
\end{tabular} \\
\hline mag_left_ok & - & bool & 4 & \begin{tabular}{l}
Indicates whether the \\
left magneto is okay or \\
not.
\end{tabular} \\
\hline mag_right_ok & bool & bool & \begin{tabular}{l}
Indicates whether the \\
right magneto is okay or \\
not.
\end{tabular} \\
\hline spark_plugs_ok & - & int & \begin{tabular}{l}
Indicates whether the \\
spark plugs are fouled or \\
not (0 = fouled plugs).
\end{tabular} \\
\hline oil_press_status & - & bool & \begin{tabular}{l}
Oil pressure status \\
indicator (0 = normal, 1 \\
= low, 2 = full failure)
\end{tabular} \\
\hline fuel_pump_ok & - & int & bool & \begin{tabular}{l}
Indicates fuel pump \\
status.
\end{tabular} \\
\hline num_tanks & - & 8 & \begin{tabular}{l}
Number of valid tanks.
\end{tabular} \\
\hline fuel_selector & - & \begin{tabular}{l}
Fuel selector switch \\
position. There is one \\
per each fuel tank. (0 = \\
off, 1 = on).
\end{tabular} \\
\hline
\end{tabular}

Signal Group 3: Landing gear outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline brake_left & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Left brake position for \\
the pilot.
\end{tabular} \\
\hline brake_right & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Right brake position for \\
the pilot.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline copilot_brake_left & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Left brake position for \\
the pilot.
\end{tabular} \\
\hline copilot_brake_right & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & \begin{tabular}{l}
Right brake position for \\
the pilot.
\end{tabular} \\
\hline brake_parking & \begin{tabular}{l}
geometry- \\
specific units
\end{tabular} & double & 1 & Parking brake position. \\
\hline gear_handle & - & bool & 1 & \begin{tabular}{l}
Landing gear handle \\
position (0 = gear handle \\
up).
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 4: Avionics outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline master_avionics & - & bool & 1 & Master avionics switch. \\
\hline
\end{tabular}

\section*{Signal Group 5: Environment outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline wind_speed_kt & knots & double & 1 & Wind speed. \\
\hline wind_dir_deg & deg & double & 1 & Wind direction. \\
\hline turbulence_norm & - & double & 1 & \begin{tabular}{l}
Turbulence magnitude, \\
normalized between 0 \\
and 1.
\end{tabular} \\
\hline temp_c & Degrees Celsius & double & 1 & Outside temperature. \\
\hline press_inhg & In Hg & double & 1 & Outside pressure. \\
\hline hground & meters & double & 1 & Ground elevation. \\
\hline magvar & deg & double & 1 & \begin{tabular}{l}
Local magnetic \\
variation.
\end{tabular} \\
\hline icing & - & bool & 1 & Icing conditions. \\
\hline
\end{tabular}

\section*{Output Signals Supported for FlightGear 0.9.3}

This table lists all the output signals supported for Version 0.9.3.
Signal Group 1: Surface position outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline aileron & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Aileron position. \\
\hline elevator & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator position. \\
\hline elevator_trim & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Elevator trim position. \\
\hline rudder & \begin{tabular}{l}
geometry \\
specific units \\
{\([-1,1]\)}
\end{tabular} & double & 1 & Rudder position. \\
\hline flaps & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 1 & Flaps position. \\
\hline flaps_power & - & bool & 1 & \begin{tabular}{l}
Power administered \\
to the flaps \((1=\) power \\
available).
\end{tabular} \\
\hline flap_motor_ok & - & bool & 1 & \begin{tabular}{l}
Shows whether or \\
not the flap motor is \\
working properly.
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 2: Engine/fuel outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline num_engines & - & int & 1 & \begin{tabular}{l}
Number of valid \\
engines.
\end{tabular} \\
\hline magnetos & - & int & 4 & \begin{tabular}{l}
Magnetos switch \\
position.
\end{tabular} \\
\hline starter_power & - & bool & 4 & \begin{tabular}{l}
Starter power switch \\
position (1 = starter \\
power).
\end{tabular} \\
\hline throttle & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & Throttle position. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline mixture & \begin{tabular}{l}
geometry \\
specific units \\
{\([0,1]\)}
\end{tabular} & double & 4 & \begin{tabular}{l}
Fuel mixture lever \\
position.
\end{tabular} \\
\hline fuel_pump_power & - & bool & 4 & \begin{tabular}{l}
Fuel pump power switch \\
position (1 = on).
\end{tabular} \\
\hline prop_advance & - & double & 4 & \begin{tabular}{l}
Propeller blade advance \\
ratio.
\end{tabular} \\
\hline engine_ok & - & bool & 4 & \begin{tabular}{l}
Indicates whether the \\
engine is okay or not.
\end{tabular} \\
\hline mag_left_ok & - & bool & 4 & \begin{tabular}{l}
Indicates whether the \\
left magneto is okay or \\
not.
\end{tabular} \\
\hline mag_right_ok & - & bool & \begin{tabular}{l}
Indicates whether the \\
right magneto is okay or \\
not.
\end{tabular} \\
\hline spark_plugs_ok & - & bool & \begin{tabular}{l}
Indicates whether the \\
spark plugs are fouled or
\end{tabular} \\
not (0 = fouled plugs).
\end{tabular}\(|\)

Signal Group 3: Landing gear outputs
\begin{tabular}{|l|l|l|l|l|}
\hline Num & Units & Type & Width & Description \\
\hline num_wheels & - & int & 1 & Number of valid wheels. \\
\hline brake & - & double & 16 & \begin{tabular}{l}
Brake position for each \\
wheel [0,1].
\end{tabular} \\
\hline gear_handle & - & bool & 1 & \begin{tabular}{l}
Landing gear handle \\
position (0 = gear handle \\
up).
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal Group 4: Avionics outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline master_avionics & - & bool & 1 & Master avionics switch. \\
\hline
\end{tabular}

\section*{Signal Group 5: Environment outputs}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Units & Type & Width & Description \\
\hline wind_speed_kt & knots & double & 1 & Wind speed. \\
\hline wind_dir_deg & deg & double & 1 & Wind direction. \\
\hline turbulence_norm & - & double & 1 & \begin{tabular}{l}
Turbulence magnitude, \\
normalized between 0 \\
and 1.
\end{tabular} \\
\hline hground & meters & double & 1 & Ground elevation. \\
\hline magvar & deg & double & 1 & \begin{tabular}{l}
Local magnetic \\
variation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

See asbhl20.

\section*{See Also}

FlightGear Preconfigured 6DoF Animation
Generate Run Script

\section*{Pack net_fdm Packet for FlightGear}

Receive net_ctrl Packet from FlightGear

\section*{Velocity Conversion}

Convert from velocity units to desired velocity units

\section*{Library}

Utilities/Unit Conversions

\section*{Description \(\sqrt{1 / 45}\)}

The Velocity Conversion block computes the conversion factor from specified input velocity units to specified output velocity units and applies the conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected from the Initial units and the Final units lists.

\section*{Dialog Box}

\section*{Initial units}

Specifies the input units.

\section*{Final units}

Specifies the output units.
The following conversion units are available:
\begin{tabular}{|l|l|}
\hline \(\mathrm{m} / \mathrm{s}\) & Meters per second \\
\hline \(\mathrm{ft} / \mathrm{s}\) & Feet per second \\
\hline \(\mathrm{km} / \mathrm{s}\) & Kilometers per second \\
\hline \(\mathrm{in} / \mathrm{s}\) & Inches per second \\
\hline \(\mathrm{km} / \mathrm{h}\) & Kilometers per hour \\
\hline mph & Miles per hour \\
\hline kts & Nautical miles per hour \\
\hline \(\mathrm{ft} / \mathrm{min}\) & Feet per minute \\
\hline
\end{tabular}

\section*{Inputs and Outputs}
\begin{tabular}{lll}
\hline Input & Dimension Type & Description \\
\hline First & & Contains the velocity in initial velocity units. \\
\hline Output & Dimension Type & Description \\
\hline First & & Contains the velocity in final velocity units.
\end{tabular}

\section*{See Also}

Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion

Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

\title{
Von Karman Wind Turbulence Model (Continuous)
}

Generate continuous wind turbulence with Von Kármán velocity spectra

\section*{Library}

Environment/Wind

\section*{Description}

The Von Kármán Wind Turbulence Model (Continuous) block uses the Von Kármán spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed \(V\) through a frozen turbulence field with a spatial frequency of \(\Omega\) radians per meter, the circular frequency \(\omega\) is calculated by multiplying \(V\) by \(\Omega\). The following table displays the component spectra functions:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{ MIL-F-8785C } & MIL-HDBK-1797 \\
\hline \multicolumn{1}{|l|}{ Longitudinal } & \(\frac{2 \sigma_{u}^{2} L_{u}}{\pi V} \cdot \frac{1}{\left[1+\left(1.339 L_{u} \frac{\omega}{V}\right)^{2}\right]^{5 / 6}}\) & \(\frac{2 \sigma_{u}^{2} L_{u}}{\pi V} \cdot \frac{1}{\left[1+\left(1.339 L_{u} \frac{\omega}{V}\right)^{2}\right]^{5 / 6}}\) \\
\hline\(\Phi_{u}(\omega)\) & \(\frac{\sigma_{w}^{2}}{V L_{w}} \cdot \frac{0.8\left(\frac{\pi L_{w}}{4 b}\right)^{1 / 3}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}}\) & \(\frac{\sigma_{w}^{2}}{2 V L_{w}} \cdot \frac{0.8\left(\frac{2 \pi L_{w}}{4 b}\right)^{1 / 3}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}}\) \\
\hline\(\Phi_{p}(\omega)\) & \\
\hline
\end{tabular}

\section*{MIL-F-8785C}

\section*{MIL-HDBK-1797}

\section*{Lateral}
\begin{tabular}{|l|l|l|}
\hline\(\Phi_{v}(\omega)\) & \(\frac{\sigma_{v}^{2} L_{v}}{\pi V} \cdot \frac{1+\frac{8}{3}\left(1.339 L_{v} \frac{\omega}{V}\right)^{2}}{\left[1+\left(1.339 L_{v} \frac{\omega}{V}\right)^{2}\right]^{11 / 6}}\) & \(\frac{2 \sigma_{v}^{2} L_{v}}{\pi V} \cdot \frac{1+\frac{8}{3}\left(2.678 L_{v} \frac{\omega}{V}\right)^{2}}{\left[1+\left(2.678 L_{v} \frac{\omega}{V}\right)^{2}\right]^{11 / 6}}\) \\
\hline\(\Phi_{r}(\omega)\) & \(\frac{\mp\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{3 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)\) & \(\frac{\mp\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{3 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)\) \\
\hline
\end{tabular}

\section*{Vertical}
\begin{tabular}{|l|l|l|}
\hline\(\Phi_{w}(\omega)\) & \(\frac{\sigma_{w}^{2} L_{w}}{\pi V} \cdot \frac{1+\frac{8}{3}\left(1.339 L_{w} \frac{\omega}{V}\right)^{2}}{\left[1+\left(1.339 L_{w} \frac{\omega}{V}\right)^{2}\right]^{11 / 6}}\) & \(\frac{2 \sigma_{w}^{2} L_{w}}{\pi V} \cdot \frac{1+\frac{8}{3}\left(2.678 L_{w} \frac{\omega}{V}\right)^{2}}{\left[1+\left(2.678 L_{w} \frac{\omega}{V}\right)^{2}\right]^{1 / 6}}\) \\
\hline\(\Phi_{q}(\omega)\) & \(\frac{ \pm\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{w}(\omega)\) & \(\frac{ \pm\left(\frac{\omega}{V}\right)^{2}}{1+\left(\frac{4 b \omega}{\pi V}\right)^{2}} \cdot \Phi_{w}(\omega)\) \\
\hline
\end{tabular}

The variable \(b\) represents the aircraft wingspan. The variables \(L_{u}, L_{v}, L_{w}\) represent the turbulence scale lengths. The variables \(\sigma_{u}, \sigma_{v}, \sigma_{w}\) represent the turbulence intensities:

The spectral density definitions of turbulence angular rates are defined in the references as three variations, which are displayed in the following table:
\[
p_{g}=\frac{\partial w_{g}}{\partial y} \quad q_{g}=\frac{\partial w_{g}}{\partial x} \quad r_{g}=-\frac{\partial v_{g}}{\partial x}
\]
\[
\begin{array}{lll}
p_{g}=\frac{\partial w_{g}}{\partial y} & q_{g}=\frac{\partial w_{g}}{\partial x} & r_{g}=\frac{\partial v_{g}}{\partial x} \\
p_{g}=-\frac{\partial w_{g}}{\partial y} & q_{g}=-\frac{\partial w_{g}}{\partial x} & r_{g}=\frac{\partial v_{g}}{\partial x}
\end{array}
\]

The variations affect only the vertical \(\left(q_{g}\right)\) and lateral \(\left(r_{g}\right)\) turbulence angular rates.
Keep in mind that the longitudinal turbulence angular rate spectrum, \(\Phi_{p}(\omega)\), is a rational function. The rational function is derived from curve-fitting a complex algebraic function, not the vertical turbulence velocity spectrum, \(\Phi_{w}(\omega)\), multiplied by a scale factor. Because the turbulence angular rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate spectra.
\begin{tabular}{ll}
Vertical & Lateral \\
\(\Phi_{q}(\omega)\) & \(-\Phi_{r}(\omega)\) \\
\(\Phi_{q}(\omega)\) & \(\Phi_{r}(\omega)\) \\
\(-\Phi_{q}(\omega)\) & \(\Phi_{r}(\omega)\)
\end{tabular}

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal is passed through forming filters. The forming filters are approximations of the Von Kármán velocity spectra which are valid in a range of normalized frequencies of less than 50 radians. These filters can be found in both the Military Handbook MIL-HDBK-1797 and the reference by Ly and Chan.

The following two tables display the transfer functions.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ MIL-F-8785C } \\
\hline Longitudinal & \(\frac{\sigma_{u} \sqrt{\frac{2}{\pi} \cdot \frac{L_{u}}{V}}\left(1+0.25 \frac{L_{u}}{V} s\right)}{1+1.357 \frac{L_{u}}{V} s+0.1987\left(\frac{L_{u}}{V}\right)^{2} s^{2}}\) \\
\hline\(H_{u}(s)\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & MIL-F-8785C \\
\hline \(H_{p}(s)\) & \[
\sigma_{w} \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4 b}\right)^{1 / 6}}{L_{w}{ }^{1 / 3}\left(1+\left(\frac{4 b}{\pi V}\right) s\right)}
\] \\
\hline \multicolumn{2}{|l|}{Lateral} \\
\hline \(H_{v}(s)\) & \[
\frac{\sigma_{v} \sqrt{\frac{1}{\pi} \cdot \frac{L_{v}}{V}}\left(1+2.7478 \frac{L_{v}}{V} s+0.3398\left(\frac{L_{v}}{V}\right)^{2} s^{2}\right)}{1+2.9958 \frac{L_{v}}{V} s+1.9754\left(\frac{L_{v}}{V}\right)^{2} s^{2}+0.1539\left(\frac{L_{v}}{V}\right)^{3} s^{3}}
\] \\
\hline \(H_{r}(s)\) & \[
\frac{\mp \frac{s}{V}}{\left(1+\left(\frac{3 b}{\pi V}\right) s\right)} \cdot H_{v}(s)
\] \\
\hline \multicolumn{2}{|l|}{Vertical} \\
\hline \(H_{w}(s)\) & \[
\frac{\sigma_{w} \sqrt{\frac{1}{\pi} \cdot \frac{L_{w}}{V}}\left(1+2.7478 \frac{L_{w}}{V} s+0.3398\left(\frac{L_{w}}{V}\right)^{2} s^{2}\right)}{1+2.9958 \frac{L_{w}}{V} s+1.9754\left(\frac{L_{w}}{V}\right)^{2} s^{2}+0.1539\left(\frac{L_{w}}{V}\right)^{3} s^{3}}
\] \\
\hline \(H_{q}(s)\) & \[
\frac{ \pm \frac{s}{V}}{\left(1+\left(\frac{4 b}{\pi V}\right) s\right)} \cdot H_{w}(s)
\] \\
\hline
\end{tabular}

\section*{MIL-HDBK-1797}

Longitudinal

4 Blocks - Alphabetical List

\section*{MIL-HDBK-1797}
\begin{tabular}{|c|c|}
\hline & MIL-HDBK-1797 \\
\hline \(H_{u}(s)\) & \[
\frac{\sigma_{u} \sqrt{\frac{2}{\pi} \cdot \frac{L_{u}}{V}}\left(1+0.25 \frac{L_{u}}{V} s\right)}{1+1.357 \frac{L_{u}}{V} s+0.1987\left(\frac{L_{u}}{V}\right)^{2} s^{2}}
\] \\
\hline \(H_{p}(s)\) & \[
\sigma_{w} \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4 b}\right)^{1 / 6}}{\left(2 L_{w}\right)^{1 / 3}\left(1+\left(\frac{4 b}{\pi V}\right) s\right)}
\] \\
\hline \multicolumn{2}{|l|}{Lateral} \\
\hline \(H_{v}(s)\) & \[
\frac{\sigma_{v} \sqrt{\frac{1}{\pi} \cdot \frac{2 L_{v}}{V}}\left(1+2.7478 \frac{2 L_{v}}{V} s+0.3398\left(\frac{2 L_{v}}{V}\right)^{2} s^{2}\right)}{1+2.9958 \frac{2 L_{v}}{V} s+1.9754\left(\frac{2 L_{v}}{V}\right)^{2} s^{2}+0.1539\left(\frac{2 L_{v}}{V}\right)^{3} s^{3}}
\] \\
\hline \(H_{r}(s)\) & \[
\frac{\mp \frac{s}{V}}{\left(1+\left(\frac{3 b}{\pi V}\right) s\right)} \cdot H_{v}(s)
\] \\
\hline \multicolumn{2}{|l|}{Vertical} \\
\hline \(H_{w}(s)\) & \[
\frac{\sigma_{w} \sqrt{\frac{1}{\pi} \cdot \frac{2 L_{w}}{V}}\left(1+2.7478 \frac{2 L_{w}}{V} s+0.3398\left(\frac{2 L_{w}}{V}\right)^{2} s^{2}\right)}{1+2.9958 \frac{2 L_{w}}{V} s+1.9754\left(\frac{2 L_{w}}{V}\right)^{2} s^{2}+0.1539\left(\frac{2 L_{w}}{V}\right)^{3} s^{3}}
\] \\
\hline \(H_{q}(s)\) & \[
\frac{ \pm \frac{s}{V}}{\left(1+\left(\frac{4 b}{\pi V}\right) s\right)} \cdot H_{w}(s)
\] \\
\hline
\end{tabular}

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of altitude.

Note The same transfer functions result after evaluating the turbulence scale lengths. The differences in turbulence scale lengths and turbulence transfer functions balance offset.

\section*{Low-Altitude Model (Altitude < 1000 feet)}

According to the military references, the turbulence scale lengths at low altitudes, where \(h\) is the altitude in feet, are represented in the following table:
\begin{tabular}{|l|l|}
\hline MIL-F-8785C & MIL-HDBK-1797 \\
\hline\(L_{w}=h\) & \(2 L_{w}=h\) \\
\(L_{u}=L_{v}=\frac{h}{(0.177+0.000823 h)^{1.2}}\) & \(L_{u}=2 L_{v}=\frac{h}{(0.177+0.000823 h)^{1.2}}\) \\
\hline
\end{tabular}

The turbulence intensities are given below, where \(W_{20}\) is the wind speed at 20 feet (6 \(\mathrm{m})\). Typically for light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30 knots; and for severe turbulence, the wind speed is 45 knots.
\[
\begin{aligned}
& \sigma_{w}=0.1 W_{20} \\
& \frac{\sigma_{u}}{\sigma_{w}}=\frac{\sigma_{v}}{\sigma_{w}}=\frac{1}{(0.177+0.000823 h)^{0.4}}
\end{aligned}
\]

The turbulence axes orientation in this region is defined as follows:
- Longitudinal turbulence velocity, \(u_{g}\), aligned along the horizontal relative mean wind vector
- Vertical turbulence velocity, \(w_{g}\), aligned with vertical.

At this altitude range, the output of the block is transformed into body coordinates.

\section*{Medium/High Altitudes (Altitude > 2000 feet)}

For medium to high altitudes the turbulence scale lengths and intensities are based on the assumption that the turbulence is isotropic. In the military references, the scale lengths are represented by the following equations:
\begin{tabular}{|l|l|}
\hline MIL-F-8785C & MIL-HDBK-1797 \\
\hline\(L_{u}=L_{v}=L_{w}=2500 \mathrm{ft}\) & \(L_{u}=2 L_{v}=2 L_{w}=2500 \mathrm{ft}\) \\
\hline
\end{tabular}

The turbulence intensities are determined from a lookup table that provides the turbulence intensity as a function of altitude and the probability of the turbulence intensity being exceeded. The relationship of the turbulence intensities is represented in the following equation: \(\sigma_{u}=\sigma_{v}=\sigma_{w}\).

The turbulence axes orientation in this region is defined as being aligned with the body coordinates:

\section*{Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)}

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates are determined by linearly interpolating between the value from the low altitude model at 1000 feet transformed from mean horizontal wind coordinates to body coordinates and the value from the high altitude model at 2000 feet in body coordinates.

\section*{Dialog Box}

\section*{Units}

Define the units of wind speed due to the turbulence.
\begin{tabular}{|l|l|l|l|}
\hline Units & Wind Velocity & Altitude & Air Speed \\
\hline Metric (MKS) & Meters/second & Meters & Meters/second \\
\hline \begin{tabular}{l}
English \\
(Velocity in \\
ft/s)
\end{tabular} & Feet/second & Feet & Feet/second \\
\hline \begin{tabular}{l}
English \\
(Velocity in \\
kts)
\end{tabular} & Knots & Feet & Knots \\
\hline
\end{tabular}

\section*{Specification}

Define which military reference to use. This affects the application of turbulence scale lengths in the lateral and vertical directions

\section*{Model type}

Select the wind turbulence model to use:
\begin{tabular}{|l|l|}
\hline Continuous Von Karman (+q-r) & \begin{tabular}{l}
Use continuous representation of Von \\
Kármán velocity spectra with positive \\
vertical and negative lateral angular \\
rates spectra.
\end{tabular} \\
\hline Continuous Von Karman (\(+\mathrm{q}+\mathrm{r}\)) & \begin{tabular}{l}
Use continuous representation of Von \\
Kármán velocity spectra with positive \\
vertical and lateral angular rates \\
spectra.
\end{tabular} \\
\hline Continuous Von Karman (-q +r) & \begin{tabular}{l}
Use continuous representation of Von \\
Kármán velocity spectra with negative \\
vertical and positive lateral angular \\
rates spectra.
\end{tabular} \\
\hline Continuous Dryden (+q -r) & \begin{tabular}{l}
Use continuous representation of \\
Dryden velocity spectra with positive \\
vertical and negative lateral angular \\
rates spectra.
\end{tabular} \\
\hline Continuous Dryden (+q +r) & \begin{tabular}{l}
Use continuous representation of \\
Dryden velocity spectra with positive \\
vertical and lateral angular rates \\
spectra.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Continuous Dryden (-q +r) & \begin{tabular}{l}
Use continuous representation of \\
Dryden velocity spectra with negative \\
vertical and positive lateral angular \\
rates spectra.
\end{tabular} \\
\hline Discrete Dryden (\(+q-r\)) & \begin{tabular}{l}
Use discrete representation of Dryden \\
velocity spectra with positive vertical \\
and negative lateral angular rates \\
spectra.
\end{tabular} \\
\hline Discrete Dryden (\(+q+r\)) & \begin{tabular}{l}
Use discrete representation of Dryden \\
velocity spectra with positive vertical \\
and lateral angular rates spectra.
\end{tabular} \\
\hline Discrete Dryden (\(-q+r\)) & \begin{tabular}{l}
Use discrete representation of Dryden \\
velocity spectra with negative vertical \\
and positive lateral angular rates \\
spectra.
\end{tabular} \\
\hline
\end{tabular}

The Continuous Von Kármán selections conform to the transfer function descriptions.

\section*{Wind speed at \(6 \mathbf{m}\) defines the low altitude intensity}

The measured wind speed at a height of 20 feet (6 meters) provides the intensity for the low-altitude turbulence model.

\section*{Wind direction at 6 m (degrees clockwise from north)}

The measured wind direction at a height of 20 feet (6 meters) is an angle to aid in transforming the low-altitude turbulence model into a body coordinates.

\section*{Probability of exceedance of high-altitude intensity}

Above 2000 feet, the turbulence intensity is determined from a lookup table that gives the turbulence intensity as a function of altitude and the probability of the turbulence intensity's being exceeded.

\section*{Scale length at medium/high altitudes}

The turbulence scale length above 2000 feet is assumed constant, and from the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density asymptote and gust load.

\section*{Wingspan}

The wingspan is required in the calculation of the turbulence on the angular rates.

\section*{Band-limited noise sample time (seconds)}

The sample time at which the unit variance white noise signal is generated.

\section*{Noise seeds}

There are four random numbers required to generate the turbulence signals, one for each of the three velocity components and one for the roll rate. The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from the shaping filters for the vertical and lateral velocities.

\section*{Turbulence on}

Selecting the check box generates the turbulence signals.

\section*{Inputs and Outputs}
\begin{tabular}{lll}
Input & Dimension Type & Description \\
First & scalar & Contains the altitude in units selected. \\
Second & scalar & Contains the aircraft speed in units selected. \\
Third & 3-by-3 matrix & Contains a direction cosine matrix. \\
Output & Dimension Type & Description \\
First & Three-element signal & \begin{tabular}{l}
Contains the turbulence velocities, in the \\
selected units.
\end{tabular} \\
Second & Three-element signal & \begin{tabular}{l}
Contains the turbulence angular rates, in \\
radians per second.
\end{tabular}
\end{tabular}

\section*{Assumptions and Limitations}

The frozen turbulence field assumption is valid for the cases of mean-wind velocity and the root-mean-square turbulence velocity, or intensity, are small relative to the aircraft's ground speed.

The turbulence model describes an average of all conditions for clear air turbulence because the following factors are not incorporated into the model:
- Terrain roughness
- Lapse rate
- Wind shears
- Mean wind magnitude
- Other meteorological factions (except altitude)

\section*{References}
U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., "Background Information and User Guide for MIL-F-8785B(ASG), `Military Specification-Flying Qualities of Piloted Airplanes'," AD869856, Cornell Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series, 1988.

Ly, U., Chan, Y., "Time-Domain Computation of Aircraft Gust Covariance Matrices," AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., "Background Information and User Guide for MIL-F-8785C, `Military Specification-Flying Qualities of Piloted Airplanes'," ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., "A Standard Kinematic Model for Flight Simulation at NASA-Ames," NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., "Simulation of Atmospheric Turbulent Gusts and Gust Gradients," AIAA Paper 81-0300, Aerospace Sciences Meeting, St. Louis, MO., January 12-15, 1981.

Yeager, J., "Implementation and Testing of Turbulence Models for the F18-HARV Simulation," NASA CR-1998-206937, Lockheed Martin Engineering \& Sciences, March 1998.

\section*{See Also}

\author{
Dryden Wind Turbulence Model (Continuous) \\ Dryden Wind Turbulence Model (Discrete) \\ Discrete Wind Gust Model \\ Wind Shear Model
}

\section*{WGS84 Gravity Model}

Implement 1984 World Geodetic System (WGS84) representation of Earth's gravity

\section*{Library}

Environment/Gravity

\section*{Description \\ \(\square\)}

The WGS84 Gravity Model block implements the mathematical representation of the geocentric equipotential ellipsoid of the World Geodetic System (WGS84). The block output is the Earth's gravity at a specific location. Gravity precision is controlled via the Type of gravity model parameter.

The WGS84 Gravity Model block icon displays the input and output units selected from the Units list.

\section*{Dialog Box}
```

A}\mathrm{ Function Block Parameters: WGS84 Gravity Model

WGS84 Gravity Model 3D (mask) (link)
Calculate Earth's gravity at a specific location using World Geodetic System (WGS 84).

The WGS 84 model is defined as a geocentric equipotential ellipsoid. This model can be found in NIMA TR8350.2, "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems."

Height is entered in the same unit system as selected for gravity. Geodetic latitude and longitude are entered in degrees.

## Parameters

Type of gravity model: WGS84 Taylor Series
Units: Metric (MKS)
Action for out of range input: $\qquad$


Help
Apply

## Type of gravity model

Specifies the method to calculate gravity:

- WGS84 Taylor Series
- WGS84 Close Approximation
- WGS84 Exact


## Units

Specifies the input and output units:

| Units | Height | Gravity |
| :--- | :--- | :--- |
| Metric (MKS) | Meters | Meters per second squared |
| English | Feet | Feet per second squared |

Exclude Earth's atmosphere

Select for the value for the Earth's gravitational field to exclude the mass of the atmosphere.

Clear for the value for the Earth's gravitational field to include the mass of the atmosphere.

This option is available only with Type of gravity model WGS84 Close Approximation or WGS84 Exact.

## Precessing reference frame

When selected, the angular velocity of the Earth is calculated using the International Astronomical Union (IAU) value of the Earth's angular velocity and the precession rate in right ascension. To obtain the precession rate in right ascension, Julian centuries from Epoch J2000.0 is calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the standard Earth rotating at a constant angular velocity.

This option is available only with Type of gravity model WGS84 Close Approximation or WGS84 Exact.

## Input Julian date

When selected, another input port, JD, appears on the block mask. Select this check box if you want to manually specify the Julian date for the block. Otherwise, the block calculates the Julian date given the values of Month, Day, and Year. Selecting this block disables the Month, Day, and Year parameters.

## Month

Specifies the month used to calculate Julian centuries from Epoch J2000.0.
This option is available only with Type of gravity model WGS84 Close Approximation or WGS84 Exact and only when Precessing reference frame is selected. It is disabled if you select Input Julian Date.

## Day

Specifies the day used to calculate Julian centuries from Epoch J2000.0.
This option is available only with Type of gravity model WGS84 Close Approximation or WGS84 Exact and only when Precessing reference frame is selected. It is disabled if you select Input Julian Date.

Year

Specifies the year used to calculate Julian centuries from Epoch J2000.0. The year must be 2000 or greater.

This option is available only with Type of gravity model WGS84 Close Approximation or WGS84 Exact and only when Precessing reference frame is selected. It is disabled if you select Input Julian Date.

## No centrifugal effects

When selected, calculated gravity is based on pure attraction resulting from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from the Earth's angular velocity.

This option is available only with Type of gravity model WGS84 Close Approximation or WGS84 Exact.

## Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Three-element <br> vector | Contains the position in geodetic latitude, longitude and <br> altitude, with units in degrees, degrees, and selected units <br> of length respectively. |
| Second <br> (Optional | Scalar | Contains the Julian centuries that you specified. |


| Output | Dimension Type | Description |
| :--- | :--- | :--- |
| Output | Vector | Applies to gravity in the north-east-down (NED) <br> coordinate system. The Exact method should output both <br> normal and tangent gravity (down and north in the NED <br> coordinate system). |

## Assumptions and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric equipotential ellipsoid of revolution. Since the gravity potential is assumed to be the
same everywhere on the ellipsoid, there must be a specific theoretical gravity potential that can be uniquely determined from the four independent constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic heights. It is sufficient near the surface when submicrogal precision is not necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic height of 20,000.0 m (approximately 65,620.0 feet). Below this height, it gives results with submicrogal precision.

To predict and determine a satellite orbit with high accuracy, use the EGM96 through degree and order 70.

## Examples

See the Environment Models subsystem in the Airframe subsystem of the aeroblk_HL20 model for an example of this block.

## Reference

[1] NIMA TR8350.2: "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems."

## Wind Angles to Direction Cosine Matrix

Convert wind angles to direction cosine matrix

## Library

Utilities/Axes Transformations


The Wind Angles to Direction Cosine Matrix block converts three wind rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector in earth axes ( $o x_{0}, o y_{0}, o z_{0}$ ) into a vector in wind axes ( $o x_{3}, o y_{3}$, $o z_{3}$ ). The order of the axis rotations required to bring this about is:

1 A rotation about $o z_{0}$ through the heading angle ( $\chi$ ) to axes ( $o x_{1}, o y_{1}, o z_{1}$ )
2 A rotation about $o y_{1}$ through the flight path angle ( $\gamma$ ) to axes ( $o x_{2}, o y_{2}, o z_{2}$ )
3 A rotation about $o x_{2}$ through the bank angle ( $\mu$ ) to axes ( $o x_{3}, o y_{3}, o z_{3}$ )

$$
\begin{aligned}
& {\left[\begin{array}{l}
o x_{3} \\
o y_{3} \\
o z_{3}
\end{array}\right]=D C M_{w e}\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
o x_{3} \\
o y_{3} \\
o z_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \mu & \sin \mu \\
0 & -\sin \mu & \cos \mu
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & 0 & -\sin \gamma \\
0 & 1 & 0 \\
\sin \gamma & 0 & \cos \gamma
\end{array}\right]\left[\begin{array}{ccc}
\cos \chi & \sin \chi & 0 \\
-\sin \chi & \cos \chi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
o x_{0} \\
o y_{0} \\
o z_{0}
\end{array}\right]}
\end{aligned}
$$

Combining the three axis transformation matrices defines the following DCM.

$$
D C M_{w e}=\left[\begin{array}{ccc}
\cos \gamma \cos \chi & \cos \gamma \sin \chi & -\sin \gamma \\
(\sin \mu \sin \gamma \cos \chi-\cos \mu \sin \chi) & (\sin \mu \sin \gamma \sin \chi+\cos \mu \cos \chi) & \sin \mu \cos \gamma \\
(\cos \mu \sin \gamma \cos \chi+\sin \mu \sin \chi) & (\cos \mu \sin \gamma \sin \chi-\sin \mu \cos \chi & \cos \mu \cos \gamma
\end{array}\right]
$$

## Dialog Box

台 Function Block Parameters: Wind Angles to Direction Cosine Matrix $\times$

Wind2DCM (mask) (link)
Determine the 3 -by-3 direction cosine matrix (DCM) from a wind orientation (mu, gamma, chi). The output DCM transforms vectors from geodetic earth or north-east-down (NED) axes to wind axes.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 3-by-1 vector | Contains wind angles, in radians. |
| Output | Dimension Type | Description |
| First | 3-by-3 direction cosine <br> matrix | Transforms earth vectors to wind vectors. |

## Assumptions and Limitations

This implementation generates a flight path angle that lies between $\pm 90$ degrees, and bank and heading angles that lie between $\pm 180$ degrees.

## See Also

Direction Cosine Matrix Body to Wind
Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Wind Angles

Rotation Angles to Direction Cosine Matrix

## Wind Angular Rates

Calculate wind angular rates from body angular rates, angle of attack, sideslip angle, rate of change of angle of attack, and rate of change of sideslip

## Library

Flight Parameters


The Wind Angular Rates block supports the equations of motion in wind-fixed frame models by calculating the wind-fixed angular rates $\left(p_{w}, q_{w}, r_{w}\right)$. The body-fixed angular rates $\left(p_{b}, q_{b}, r_{b}\right)$, angle of attack ( $\alpha$ ), sideslip angle ( $\beta$ ), rate of change of angle of attack $(\dot{\alpha})$, and rate of change of sideslip $(\dot{\beta})$ are related to the wind-fixed angular rate by the following equation.

$$
\left[\begin{array}{l}
p_{w} \\
q_{w} \\
r_{w}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \alpha \cos \beta & \sin \beta & \sin \alpha \cos \beta \\
-\cos \alpha \sin \beta & \cos \beta & -\sin \alpha \sin \beta \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]\left[\begin{array}{c}
p_{b}-\dot{\beta} \sin \alpha \\
q_{b}-\dot{\alpha} \\
r_{b}+\dot{\beta} \cos \alpha
\end{array}\right]
$$

## Dialog Box

Function Block Parameters: Wind Angular Rates
Wind Angular Rates (mask) (link)
Compute wind angular rates using body angular rates, angle of attack, sideslip angle, rate of change of angle of attack and rate of change of sideslip angle.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | 2 -by-1 vector | Contains angle of attack and sideslip, in <br> radians. |
|  | 2 -by-1 vector | Contains rate of change of angle of attack and <br> rate of change of sideslip, in radians per second. <br> Contains the body angular rates, in radians per <br> second. |
| Output | Dimension Type | Description |
| First |  | Contains the wind angular rates, in radians per <br> second. |

## See Also

3DOF (Body Axes)
6DOF Wind (Quaternion)
6DOF Wind (Wind Angles)
Custom Variable Mass 3DOF (Body Axes)
Custom Variable Mass 6DOF Wind (Quaternion)
Custom Variable Mass 6DOF Wind (Wind Angles)
Simple Variable Mass 3DOF (Body Axes)
Simple Variable Mass 6DOF Wind (Quaternion)
Simple Variable Mass 6DOF Wind (Wind Angles)

## Wind Shear Model

Calculate wind shear conditions

## Library

Environment/Wind

## Description



The Wind Shear Model block adds wind shear to the aerospace model. This implementation is based on the mathematical representation in the Military Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by the following equation for the mean wind profile as a function of altitude and the measured wind speed at 20 feet ( 6 m ) above the ground.

$$
u_{w}=W_{20} \frac{\ln \left(\frac{h}{z_{0}}\right)}{\ln \left(\frac{20}{z_{0}}\right)}, 3 f t<h<1000 f t
$$

where $u_{w}$ is the mean wind speed, $W_{20}$ is the measured wind speed at an altitude of 20 feet, $h$ is the altitude, and $z_{0}$ is a constant equal to 0.15 feet for Category C flight phases and 2.0 feet for all other flight phases. Category C flight phases are defined in reference [1] to be terminal flight phases, which include takeoff, approach, and landing.

The resultant mean wind speed in the flat Earth axis frame is changed to body-fixed axis coordinates by multiplying by the direction cosine matrix (DCM) input to the block. The block output is the mean wind speed in the body-fixed axis.

## Dialog Box



## Units

Define the units of wind shear.

| Units | Wind | Altitude |
| :--- | :--- | :--- |
| Metric (MKS) | Meters/second | Meters |
| English (Velocity in ft/ <br> s) | Feet/second | Feet |
| English (Velocity in kts) | Knots | Feet |

## Flight phase

Select flight phase:

- Category C - Terminal Flight Phases
- Other

Wind speed at $6 \mathbf{m}$ ( 20 feet) altitude ( $\mathbf{m} / \mathrm{s}, \mathrm{f} / \mathrm{s}$, or knots)
The measured wind speed at an altitude of 20 feet ( 6 m ) above the ground.
Wind direction at $6 \mathbf{m}$ ( 20 feet) altitude (degrees clockwise from north)

The direction of the wind at an altitude of 20 feet ( 6 m ), measured in degrees clockwise from the direction of the Earth $x$-axis (north). The wind direction is defined as the direction from which the wind is coming.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Contains the altitude in units selected. |  |
| Second | 3-by-3 direction cosine <br> matrix | Description |
| Output | Dimension Type | Contains the mean wind speed in the body axes <br> frame, in the selected units. |
| First | 3-by-1 vector |  |

## Examples

See Wind Shear Model in aeroblk_HL20 for an example of this block.

## Reference

U.S. Military Specification MIL-F-8785C, 5 November 1980.

## See Also

Discrete Wind Gust Model
Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)
Von Karman Wind Turbulence Model (Continuous)

## World Magnetic Model 2000

Calculate Earth's magnetic field at specific location and time using World Magnetic Model 2000 (WMM2000)

Note: World Magnetic Model 2000 will be removed in a future version. For model years between 2000 and the start of 2010, use International Geomagnetic Reference Field 11. For model years between 2010 and the start of 2015, use World Magnetic Model 2010.

## Library

Environment/Gravity


The WMM2000 block implements the mathematical representation of the National Geospatial Intelligence Agency (NGA) World Magnetic Model 2000. The WMM2000 block calculates the Earth's magnetic field vector, horizontal intensity, declination, inclination, and total intensity at a specified location and time. The reference frame is north-eastdown (NED).

## Dialog Box



## Units

Specifies the input and output units:

| Units | Height | Magnetic Field | Horizontal Intensity | Total Intensity |
| :--- | :--- | :--- | :--- | :--- |
| Metric (MKS) | Meters | Nanotesla | Nanotesla | Nanotesla |
| English | Feet | Nanogauss | Nanogauss | Nanogauss |

## Input decimal year

When selected, the decimal year is an input for the World Magnetic Model 2000 block. Otherwise, a date must be specified using the dialog parameters of Month, Day, and Year.

## Month

Specifies the month used to calculate decimal year.

## Day

Specifies the day used to calculate decimal year.
Year
Specifies the year used to calculate decimal year.

## Action for out of range input

Specify if out-of-range input invokes a warning, error or no action.

## Output horizontal intensity

When selected, the horizontal intensity is output.

## Output declination

When selected, the declination, the angle between true north and the magnetic field vector (positive eastwards), is output.

## Output inclination

When selected, the inclination, the angle between the horizontal plane and the magnetic field vector (positive downwards), is output.

## Output total intensity

When selected, the total intensity is output.

## Inputs and Outputs

| Input | Dimension Type | Description |
| :---: | :---: | :---: |
| First |  | Contains the height, in selected units. |
| Second |  | Contains the latitude in degrees. |
| Third |  | Contains the longitude in degrees. |
| Fourth (Optional) |  | Contains the desired year in a decimal format to include any fraction of the year that has already passed. The value is the current year plus the number of days that have passed in this year divided by 365 . |
|  |  | The following code illustrates how to calculate the decimal year, dyear, for March 21, 2005: <br> $\% \%$ BEGIN CODE \% \% \% <br> dyear=decyear('21-March-2005', 'dd-mmm-yyyy') <br> $\% \%$ END CODE \% \% \% |


| Output | Dimension Type |
| :--- | :--- |
| First | Description <br> Contains the magnetic field vector in selected <br> units. |
| Second <br> (Optional) | Contains the horizontal intensity in selected <br> units. |
| Third <br> (Optional) | Contains the declination in degrees. |
| Fourth <br> (Optional) | Contains the inclination in degrees. |
| Fifth <br> (Optional) | Contains the total intensity in selected units. |

## Limitations

The WMM2000 specification produces data that is reliable five years after the epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local time or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial magnetic fluctuations due to the Earth's core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.

## Reference

Macmillian, S. and J. M. Quinn, 2000. "The Derivation of the World Magnetic Model 2000," British Geological Survey Technical Report WM/00/17R.
http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

## See Also

International Geomagnetic Reference Field 11, World Magnetic Model 2010

## World Magnetic Model 2005

Calculate Earth's magnetic field at specific location and time using World Magnetic Model 2005 (WMM2005)

Note: World Magnetic Model 2005 will be removed in a future version. For model years between 2000 and the start of 2010, use International Geomagnetic Reference Field 11. For model years between 2010 and the start of 2015, use World Magnetic Model 2010.

## Library

Environment/Gravity


The WMM2005 block implements the mathematical representation of the National Geospatial Intelligence Agency (NGA) World Magnetic Model 2005. The WMM2005 block calculates the Earth's magnetic field vector, horizontal intensity, declination, inclination, and total intensity at a specified location and time. The reference frame is north-eastdown (NED).

Note: You cannot use this block to model the Earth magnetic field above an altitude of 1,000,000 meters.

## Dialog Box

| Function Block Parameters: World Magnetic Model 2005 |  |  |
| :---: | :---: | :---: |
| World Magnetic Model 2005 (mask) |  |  |
| Calculate the Earth's magnetic field at a specific location and time using the World Magnetic Model (WMM). This model is valid for the year 2005 through the year 2010. |  |  |
| The WMM-2005 can be found on the web at http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml and in "NOAA Technical Report: The US/UK World Magnetic Model for 2005-2010 ". |  |  |
| Height is entered in length units of selected unit system. Latitude and longitude are entered in degrees. |  |  |
| Parameters |  |  |
| Units: Metric (MKS) |  |  |
| V Input decimal year |  |  |
| Month: January |  |  |
| Day: 1 |  |  |
| Year: 2005 |  | $\checkmark$ |
| Action for out of range input: | Error | $\nabla$ |
| Output horizontal intensityOutput declinationOutput inclinationOutput total intensity |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| OK | Cancel Help | Apply |

## Units

Specifies the input and output units:

| Units | Height | Magnetic Field | Horizontal Intensity | Total Intensity |
| :--- | :--- | :--- | :--- | :--- |
| Metric (MKS) | Meters | Nanotesla | Nanotesla | Nanotesla |
| English | Feet | Nanogauss | Nanogauss | Nanogauss |

## Input decimal year

When selected, the decimal year is an input for the World Magnetic Model 2005 block. Otherwise, a date must be specified using the dialog parameters of Month, Day, and Year.

## Month

Specifies the month used to calculate decimal year.

## Day

Specifies the day used to calculate decimal year.

## Year

Specifies the year used to calculate decimal year.

## Action for out of range input

Specify if out-of-range input invokes a warning, error or no action.

## Output horizontal intensity

When selected, the horizontal intensity is output.

## Output declination

When selected, the declination, the angle between true north and the magnetic field vector (positive eastwards), is output.

## Output inclination

When selected, the inclination, the angle between the horizontal plane and the magnetic field vector (positive downwards), is output.

## Output total intensity

When selected, the total intensity is output.

## Inputs and Outputs

| Input | Dimension Type |
| :--- | :--- |
| First | Description |
| Second | Contains the height, in selected units. |
| Third | Contains the latitude in degrees. |
| Fourth | Contains the longitude in degrees. <br> (Optional) |
|  | Contains the desired year in a decimal format to <br> include any fraction of the year that has already <br> passed. The value is the current year plus the <br> number of days that have passed in this year <br> divided by 365. |
|  | The following code illustrates how to calculate <br> the decimal year, dyear, for March 21, 2005: |
|  |  |


| Input | Dimension Type | Description |
| :---: | :---: | :---: |
|  |  | \%\%\%BEGIN CODE\%\%\% dyear=decyear('21-March-2005','dd-mmm-yyyy') \%\%\%END CODE\%\%\% |


| Output | Dimension Type | Description |
| :--- | :--- | :--- |
| First | Vector | Contains the magnetic field in selected units. |
| The reference frame is north-east-down (NED). |  |  |
| Second <br> (Optional) | Contains the horizontal intensity in selected <br> units. |  |
| Third <br> (Optional) | Contains the declination in degrees. |  |
| Fourth <br> (Optional) | Contains the inclination in degrees. |  |
| Fifth <br> (Optional) | Contains the total intensity in selected units. |  |

## Limitations

The WMM2005 specification produces data that is reliable five years after the epoch of the model, which is January 1, 2005.

The internal calculation of decimal year does not take into account local time or leap seconds.

The WMM2005 specification describes only the long-wavelength spatial magnetic fluctuations due to the Earth's core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.

## Reference

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

## See Also

International Geomagnetic Reference Field 11, World Magnetic Model 2010

## World Magnetic Model 2010

Calculate Earth's magnetic field at specific location and time using World Magnetic Model 2010 (WMM2010)

## Library

Environment/Gravity


The WMM2010 block implements the mathematical representation of the National Geospatial Intelligence Agency (NGA) World Magnetic Model 2010. The WMM2010 block calculates the Earth's magnetic field vector, horizontal intensity, declination, inclination, and total intensity at a specified location and time. The reference frame is north-eastdown (NED).

Note: You cannot use this block to model the Earth magnetic field above an altitude of 1,000,000 meters.

## Dialog Box



## Units

Specifies the input and output units:

| Units | Height | Magnetic Field | Horizontal Intensity | Total Intensity |
| :--- | :--- | :--- | :--- | :--- |
| Metric (MKS) | Meters | Nanotesla | Nanotesla | Nanotesla |
| English | Feet | Nanogauss | Nanogauss | Nanogauss |

## Input decimal year

When selected, the decimal year is an input for the World Magnetic Model 2010 block. Otherwise, a date must be specified using the dialog parameters of Month, Day, and Year.

## Month

Specifies the month used to calculate decimal year.

## Day

Specifies the day used to calculate decimal year.

## Year

Specifies the year used to calculate decimal year.

## Action for out of range input

Specify if out-of-range input invokes a warning, error or no action.

## Output horizontal intensity

When selected, the horizontal intensity is output.

## Output declination

When selected, the declination, the angle between true north and the magnetic field vector (positive eastwards), is output.

## Output inclination

When selected, the inclination, the angle between the horizontal plane and the magnetic field vector (positive downwards), is output.

## Output total intensity

When selected, the total intensity is output.

## Inputs and Outputs

| Input | Dimension Type |
| :--- | :--- |
| First | Description |
| Second | Contains the height, in selected units. |
| Third | Contains the latitude in degrees. |
| Fourth | Contains the longitude in degrees. <br> (Optional) |
|  | Contains the desired year in a decimal format to <br> include any fraction of the year that has already <br> passed. The value is the current year plus the <br> number of days that have passed in this year <br> divided by 365. |
|  | The following code illustrates how to calculate <br> the decimal year, dyear, for March 21, 2010: |
|  |  |


| Input | Dimension Type | Description |
| :---: | :---: | :---: |
|  |  | \%\%\%BEGIN CODE\% \% \% dyear=decyear('21-March-2010', 'dd-mmm-yyyy') \%\%\%END CODE\%\%\% |
| Output | Dimension Type | Description |
| First | Vector | Contains the magnetic field in selected units. |
| Second (Optional) |  | Contains the horizontal intensity in selected units. |
| Third (Optional) |  | Contains the declination in degrees. |
| Fourth (Optional) |  | Contains the inclination in degrees. |
| Fifth <br> (Optional) |  | Contains the total intensity in selected units. |

## Limitations

The WMM2010 specification produces data that is reliable five years after the epoch of the model, which is January 1, 2015.

The internal calculation of decimal year does not take into account local time or leap seconds.

The WMM2010 specification describes only the long-wavelength spatial magnetic fluctuations due to the Earth's core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.

## Reference

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

## See Also

World Magnetic Model 2000, World Magnetic Model 2005

## Zonal Harmonic Gravity Model

Calculate zonal harmonic representation of planetary gravity

## Library

Environment/Gravity


The Zonal Harmonic Gravity Model block calculates the zonal harmonic representation of planetary gravity at a specific location based on planetary gravitational potential. This block provides a convenient way to describe the gravitational field of a planet outside its surface.

By default, the block uses the fourth order zonal coefficient for Earth to calculate the zonal harmonic gravity. It also allows you to specify the second or third zonal coefficient.
gravityzonal is implemented using the following planetary parameter values for each planet:

| Planet | Equatorial Radius (Re) <br> in Meters | Gravitational Parameter <br> $(\mathbf{G M})$ in $\mathbf{m}^{\mathbf{3}} \mathbf{s}^{\mathbf{2}}$ | Zonal Harmonic Coefficients <br> (J Values) |
| :--- | :--- | :--- | :--- |
| Earth | 6378.1363 e 3 | 3.986004415 e 14 | $[0.0010826269-0.0000025323$ <br> $-0.0000016204]$ |
| Jupiter | $71492 . \mathrm{e} 3$ | 1.268 e 17 | $[0.014750-0.00058]$ |
| Mars | 3397.2 e 3 | 4.305 e 13 | $[0.0019640 .000036]$ |
| Mercury | 2439.0 e 3 | 2.2032 e 13 | 0.00006 |
| Moon | 1738.0 e 3 | 4902.799 e 9 | 0.0002027 |
| Neptune | 24764 e 3 | 6.809 e 15 | 0.004 |


| Planet | Equatorial Radius (Re) <br> in Meters | Gravitational Parameter <br> $(\mathbf{G M}) \mathbf{i n} \mathbf{m}^{\mathbf{3}} \mathbf{s}^{\mathbf{2}}$ | Zonal Harmonic Coefficients <br> (J Values) |
| :--- | :--- | :--- | :--- |
| Saturn | $60268 . \mathrm{e} 3$ | 3.794 e 16 | $[0.016450-0.001]$ |
| Uranus | $25559 . \mathrm{e} 3$ | 5.794 e 15 | 0.012 |
| Venus | 6052.0 e 3 | 3.257 e 14 | 0.000027 |

## Dialog Box

```
Function Block Parameters: Zonal Harmonic Gravity Model
Zonal Harmonic Gravity Model (mask) (link)
Calculate a zonal harmonic representation of planetary gravity at a specific
location based on planetary gravitational potential.
The zonal harmonic gravity is calculated for planet using fourth order zonal coefficients by default.
Position is entered in length units of selected unit system.
```




## Units

Specify the input units:

| Units | Position | Equatorial Radius | Gravitational Parameter |
| :--- | :--- | :--- | :--- |
| Metric <br> (MKS) | Meters | Meters | Meters cubed per second <br> squared |
| English | Feet | Feet | Feet cubed per second <br> squared |

## Degree

Specify the degree of harmonic model.

- 2 - Second degree, J2. Most significant or largest spherical harmonic term, which accounts for the oblateness of a planet.
- 3 - Third degree, J3.
- 4 - Fourth degree, J4 (default).


## Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

## Planet model

Specify the planetary model. From the list, select Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, or Custom.

Selecting Custom enables you to specify your own planetary model. This option enables the Equatorial radius, Gravitational parameter, and J values parameters.

Selecting Mercury, Venus, Moon, Uranus, or Neptune limits the degree to 2.
Selecting Mars limits the degree to 3.

## Equatorial radius

Specify the planetary equatorial radius in the length units that the Units parameter defines.

## Gravitational parameter

Specify the planetary gravitational parameter in the length units cubed per second squared that the Units parameter defines.

## J values

Specify a 3 -element array that defines the zonal harmonic coefficients.

## Inputs and Outputs

This block accepts only scalar inputs ( $\mathrm{m}=1$ ).

| Input | Dimension <br> Type | Description |
| :--- | :--- | :--- |
| First | m-by-3 matrix |  |
| Output | Contains planet-centered planet-fixed coordinates from the <br> center of the planet in the selected length units. If Planet <br> model has a value of Earth, this matrix contains Earth- <br> centered Earth-fixed (ECEF) coordinates. |  |
| Type | Description |  |

## References

Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.

Fortescue, P., J. Stark, G. Swinerd, (Eds.). Spacecraft Systems Engineering, Third Edition, Wiley \& Sons, West Sussex, 2003.

Tewari, A., Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink, Birkhäuser, Boston, 2007.

## Aerospace Units

The main blocks of the Aerospace Blockset library support standard measurement systems. The Unit Conversion blocks support all units listed in this table.

| Quantity | Metric (MKS) | English |
| :---: | :---: | :---: |
| Acceleration | meters $/$ second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$, <br> kilometers $/$ second ${ }^{2}\left(\mathrm{~km} / \mathrm{s}^{2}\right)$, <br> (kilometers/hour)/second (km/h- <br> s), g-unit (g) | inches/second ${ }^{2}\left(\mathrm{in} / \mathrm{s}^{2}\right)$, feet/second ${ }^{2}$ (ft/s ${ }^{2}$ ), (miles/hour)/second (mph/ s), g-unit (g) |
| Angle | radian (rad), degree (deg), revolution | radian (rad), degree (deg), revolution |
| Angular acceleration | radians/second ${ }^{2}\left(\mathrm{rad} / \mathrm{s}^{2}\right)$, degrees/ second $^{2}$ (deg/s ${ }^{2}$ ), revolutions/ minute (rpm), revolutions/second (rps) | radians $/$ second ${ }^{2}\left(\mathrm{rad} / \mathrm{s}^{2}\right)$, degrees/ second ${ }^{2}$ ( $\mathrm{deg} / \mathrm{s}^{2}$ ), revolutions/ minute (rpm), revolutions/second (rps) |
| Angular velocity | radians/second (rad/s), degrees/ second (deg/s), revolutions/ minute ( rpm ) | radians/second (rad/s), degrees/ second (deg/s), revolutions/minute (rpm) |
| Density | kilogram/meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | pound mass/foot ${ }^{3}\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$, slug/ foot $^{3}$ (slug/ft ${ }^{3}$ ), pound mass/inch ${ }^{3}$ (lbm/in ${ }^{3}$ ) |
| Force | newton (N) | pound (lb) |
| Inertia | kilogram-meter ${ }^{2}$ (kg-m ${ }^{2}$ ) | slug-foot ${ }^{2}$ (slug-ft ${ }^{2}$ ) |
| Length | meter (m) | inch (in), foot (ft), mile (mi), nautical mile ( nm ) |
| Mass | kilogram (kg) | slug (slug), pound mass (lbm) |
| Pressure | Pascal (Pa) | pound/inch ${ }^{2}$ (psi), pound/foot ${ }^{2}$ (psf), atmosphere (atm) |


| Quantity | Metric (MKS) | English |
| :---: | :---: | :---: |
| Temperature | kelvin (K), degrees Celsius ( ${ }^{\circ} \mathrm{C}$ ) | degrees Fahrenheit ( ${ }^{\circ} \mathrm{F}$ ), degrees Rankine ( ${ }^{\circ} \mathrm{R}$ ) |
| Torque | newton-meter ( $\mathrm{N}-\mathrm{m}$ ) | pound-feet (lb-ft) |
| Velocity | meters/second ( $\mathrm{m} / \mathrm{s}$ ), kilometers/ second (km/s), kilometers/hour (km/h) | inches/second (in/s), feet/second (ft/s), feet/minute (ft/min), miles/ hour (mph), knots |


[^0]:    aeroblk_indicated Model

[^1]:    Signal Group 2: ShowVelocityAccelerationInputs

